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Abstract
Legacy codebases written in C have been shown to fall victim to memory safety vulner-
abilities, making a migration into safer languages like Rust highly desirable. Manually
translating the vast amounts of code is infeasible, and traditional rule-based transpilers
fail to produce idiomatic and safe Rust code. The coding capabilities of Large Language
Models (LLMs) present a promising alternative for an idiomatic translation. However,
their practical usability requires a comprehensive investigation, especially regarding their
robustness when translating the diverse nature of real-world C codebases. The thesis
addresses this need by developing and applying a comprehensive robustness evaluation
framework tailored to LLM-based C-to-Rust translation.

This framework evaluates the LLMs’ susceptibility to prompt variations through a diverse
set of code-focused perturbations. It utilizes an existing state-of-the-art code translation
system that directly checks for functional equivalence and performs automatic feedback
loops in case of failure. Quantifying translation performance deviations to perturbed and
unperturbed inputs, the framework’s metrics allow a detailed view of the robustness.
The framework complements this information by including whether perturbation-based
performance deviations go beyond the expected fluctuations of LLMs, whether feedback
loops impact robustness, and whether semantic similarity between input variations can
predict the robustness of LLMs.

Applying the framework reveals that modern models are robust against most input
variations, especially when supported by feedback loops. The feedback loops improved
both the overall translation success and the robustness, making them an indispensable
component of LLM-based translation systems. However, the evaluation still discovered
weaknesses to certain perturbations, one model-agnostic and multiple model-specific. While
modern models predominantly signal robust behavior, they exhibit unique strengths and
weaknesses that impact the choice of the best model for the translation system. Since the
robustness to certain variations is not generalizable across models, the thesis concludes
that a continuous evaluation of new systems is necessary to understand their particular
strengths and weaknesses. Only by a comprehensive evaluation can we make a fine-grained
decision of which LLM aligns best with the given requirements of a C-to-Rust migration.
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1 Introduction

1.1 Motivation

“If the translator does his job as he should, he is a benefactor
of humanity; otherwise he is a veritable public enemy.”

Miguel Sáenz, as cited in [MW21]

Although Sáenz was talking about human language, his words are highly relevant for today’s
Artificial Intelligence (AI)-based systems that can perform automated code translation. An
incorrect or non-robust automatic translator can quickly become Sáenz’s “public enemy”.
Think of an automatic system that translates a safety-relevant software function correctly.
However, as soon as a developer adds a supposedly harmless comment or performs a
formatting change, the automatic system unexpectedly starts generating faulty or unsafe
code. Such inconsistent translations might be undetected, especially when the system
normally has a high success rate. This could ultimately lead to serious errors in safety-
relevant systems and reflects Sáenz’s statement that a translator has to do “his job as he
should”, and consequently demands the translator to do their job robustly.

The rapid advancements in Large Language Models (LLMs), primarily caused by the
introduction of the transformer architecture [Vas+17], led to the highly popular LLM’s we
know today: ChatGPT [Ope22a], Gemini [Ani+23], or Llama [Tou+23]. LLMs and their
emergent abilities in processing natural language [Wei+22] sparked a large interest among
the scientific community, and is highly supported by the economy, and various AI-based
startups. Altogether, they revealed a vast amount of interesting use cases for generative
AI [Zha+23c].

One of these is generative AI for Software Engineering (SE), which has the potential to
revolutionize its area [Hou+24; Fan+23]. Fan et al. name scenarios like code generation,
software testing, document generation, and many more, that are active research areas in
this domain [Fan+23]. Furthermore, the acceptance among the developer community for
AI in SE apparently is very high. A survey found that 92% of US-based developers already
use AI coding tools in and outside of their work [Sta23].

However, this enthusiasm should be approached with caution. Many publications indi-
cate that LLM-based coding tools can introduce low-quality code [Par+24], containing
bugs [Per+23; Jes+23] or security vulnerabilities [Sch+21; ANA23].

Furthermore, a recent paper points out that good performance on State-of-the-Art
(SOTA) benchmarks does not necessarily mean that a model is “intelligent” enough to
generalize well to other similar tasks in real-world environments [Nez+24]. Specifically,
Nezhurina et al. show that even the newest and largest SOTA models have problems
with simple tasks that require logical thinking and common sense. They conclude that
it is necessary to revisit current benchmarks and call for a re-evaluation of the models’
capabilities.

A possible interpretation of their finding is that LLMs have to be evaluated specifically
for their tasked problem domains, since results from other domains may not directly
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transfer to seemingly similar problems, which thus could lead to a general overestimation
of an AI system’s capabilities.

A promising problem domain is automated code translation [Eni+24; Yan+24b; Zha+24a],
especially the translation from C to Rust [SS24; HR25; DAR24]. C’s remaining dominance
in systems-level and safety-critical software [BBH18; San20] and Rust’s advantage in
memory safety [Jun+18] pose a great potential for migrating C codebases into Rust.
Since Rust eliminates some of the most critical classes of runtime errors common in C, a
migration from C to Rust is highly desirable. This gets underlined in an article of 2019,
where Microsoft reported that 70% of their security issues stemmed from memory-safety
problems [Cim19]. Many of those could be prevented only by using the safety features that
come with Rust. However, manually rewriting and translating C codebases is impractical.

While there are tools like c2rust [Imm19a] that provide a rule-based, syntactic translation,
the resulting code often remains unsafe, as it structurally mirrors the original C code.
Specifically, the handwritten, rule-based translators fail to leverage Rust’s idiomatic safety
features [Yan+24b; Emr+21; Li+25]. By contrast, LLMs trained on large amounts of
data, including idiomatic and safe Rust code, offer an innovative method to produce more
idiomatic translations [Yan+24a]. However, this opportunity comes with introducing the
risks and weaknesses posed by LLM-generated code.

Fortunately, the nature of code translation offers an advantage that other AI for SE use
cases do not have. The advantage is that the output can be directly verified for correctness.
An LLM-based C to Rust translation system must ensure that the generated Rust code
(i) compiles without errors and (ii) is functionally equivalent to the original C code.

Both of which can be verified in a generate-and-check pattern [Als+24]. Whether the
translated file compiles can be checked by the Rust compiler, whereas the functional
equivalence can be verified by differential fuzzing [Eni+24]. In addition, the automatic
verification can be utilized for another benefit. Specifically, the checking results can be
leveraged to implement a feedback loop process that directly causes a re-prompting of the
LLM, in case of failure. This re-prompting gives feedback to the model on why a proposed
solution failed. Such a feedback-based approach mimics human interaction and might
improve the likelihood of a successful translation.

While this generate-and-check pattern presents a powerful way for verifying functional
equivalence in a specific translation attempt, it does not necessarily prevent the translator
from becoming Sáenz’s “veritable public enemy”. The generate-and-check pattern might
enable the assessment of the system for specific inputs, but it does not show how reliably
the system creates correct translations under realistic conditions. Real-world codebases
are diverse. They are a product of multiple authors, with varying styles, commenting
levels, or logical expressions (e.g., for vs while loops). An LLM-based translator that
aims to be a “benefactor”, rather than a potential “enemy”, has to be robust against such
diversity. It needs to produce compilable and functionally equivalent Rust code, not just
for one specific input but also when that input mirrors these common, semantically similar
variations.

However, the demand for robustness must consider that LLMs are stochastic models,
whose outputs are influenced by sampling strategies during generation [Hol+20]. Therefore,
it is unreasonable to expect completely deterministic behavior with always identical
outputs, since that is not how these models work. Thus, some extent of fluctuations must
be accepted in the system. What this means in detail is that there can be repeated runs
with the same or semantically similar inputs that lead to success as well as failure of the
system. Although not the ideal scenario, it is considered acceptable as long as it remains
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in a statistically expected range reflecting the model’s probabilistic nature.
The actual problem, where LLM-based translators risk becoming Sáenz’s “veritable

public enemy”, is a significant lack of robustness. More precisely, this means an unexpected
change away from the usual performance of a translation system when it is prompted with
semantically similar, but slightly altered inputs, which also represents the diversity of the
real world. Such deviations suggest a potential weakness in the robustness of the model to
certain inputs.

As a result, to deploy or sell such systems with confidence, they must be systematically
assessed for robustness. It needs an evaluation of whether the LLM-based translator
performs consistently under real-world input variations, and therefore acts as “benefactor”.
Solely testing the code translation capabilities concerning success rate is not enough to
assess the systems confidently for practical applications.

An often adopted method to measure and quantify such specific characteristics is
by creating standardized benchmarks and evaluation frameworks. The rise of public
and standardized benchmarks has had a tremendous impact on the recent progress in
machine learning. The open comparison with benchmarks like ImageNet [Rus+15] or
GLUE [Wan+19] led to rapid progress in image processing and natural language processing.
A comprehensive robustness evaluation framework for LLM-based code translation could
create a similar leap, as this reveals robustness as another important aspect for LLM
evaluation, beyond standard performance metrics. Only by revealing weaknesses can they
be proactively improved.

Therefore, a meaningful benchmarking framework must not only evaluate the general
performance of the system, but also its reliability and robustness in such scenarios. In
addition, it is a key challenge to differentiate between the inherent nondeterminism
producing expectable fluctuations, and true robustness deficits that cause drastic changes
to the reliability of the performance. Only demonstrating that an LLM can translate C
to Rust for exemplary data is insufficient and could potentially overestimate the model’s
capabilities, producing the same misconception highlighted by Nezhurina et al. [Nez+24].

This motivates the development of a comprehensive evaluation framework that incor-
porates these ideas. Such a framework should (i) apply a wide range of realistic and
meaningful code variations through perturbations, (ii) provide methods to separate noise
from robustness deficits, (iii) consider the influence of approaches like feedback loops, and
(iv) investigate the relationship between robustness and input similarity. The development
and application of such a framework for C to Rust translation is the focus of this thesis.

1.2 Problem Statement and Research Gap
The motivation highlights the need for assessing LLM-based translators on robustness.
While there are publications that examine the robustness of LLMs in SE-tasks [Wan+23;
Yan+23a; Mas+23; Imp+25], closer investigation reveals the following significant gaps
concerning the motivated evaluation in Section 1.1.

1.2.1 Robustness to Instruction vs Robustness to Code
Current research on robustness evaluation mainly studies variations in the natural language
part of LLM-prompts [Yan+23a; Mas+23; Imp+25]. While this is relevant for code
generation based on problems or requirements, it is less meaningful for the case of code
translation. In this case, the LLM prompt consists of a natural language part and a code
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part that is to be translated into the target language. The natural language part describes
the general task to the model, e.g., “Translate the following C code into Rust.”. A deployed
code translation system will not vary in its underlying task description, rather, it will vary
in the code that is to be translated. Consequently, a relevant robustness evaluation for code
translation has to focus on input variations on the code part of the prompt. Specifically,
such variations should reflect input variations that simulate the diverse characteristics of
codebases, including different formatting rules, styles, detail, or language of comments,
variable names, or a refactored control flow. While Wang et al. [Wan+23] include code
variations in their robustness evaluation, the evaluated code variations are primarily on
a superficial level, only sparsely testing structural variations. Furthermore, they focus
on problem-based code generation and code completion, and not specifically on code
translation, which reveals another research gap.

1.2.2 Robustness when Translating Code
As far as can be determined from the literature, no work evaluates robustness specifically
for code translation. Recalling the interpretation of Nezhurina et al. [Nez+24], the find-
ings of benchmarks of other domains should not be translated to a different, seemingly
similar domain. The prior evaluated robustness for problem-based code generation or code
completion has some fundamental differences from code translation.

1. In problem-based code generation, the task is to fulfill or solve a specific problem,
defined in natural language, which is not necessarily complete or unambiguous. In
code translation, a certain code in the original language has to be translated into
the target language, which is unambiguous. Consequently, input variations in code
translation maintain its unambiguity, and subsequent robustness deficiencies can be
directly attributed to the model’s incapability of handling such variations, rather
than to ambiguities in the task itself.

2. Other domains require the LLM to generate Code from scratch, whereas code
translation includes the prior logic and control flow that has to be converted into
the representation of the target language. Not generating from scratch may reveal
other robustness capabilities, as it does not require reasoning about an algorithmic
solution, but rather an idiomatic conversion.

3. Code generation is commonly verified with unit tests [Wan+23; Mas+23], whereas
the goal of code translation is functional equivalence. A proper functional equivalence
verification reveals even the smallest functional differences, which might be unnoticed
by unit tests. As a result, a robust code translation system must reliably produce
code that passes the strict functional equivalence check.

This incomplete overview highlights that robustness knowledge from the other domains
cannot be directly transferred to code translation. Therefore, there is a clear need for a
code-translation-tailored robustness evaluation.

1.2.3 Programming Languages and Benchmark Complexity
So far, the literature on the robustness of code generation focuses mostly on popular
languages, such as Python [Wan+23; Yan+23a] or Java [Mas+23]. Consequently, these
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languages offer more source code an LLM could be trained and evaluated on. LLMs robust-
ness in generating less popular, or low-level, programming languages is underrepresented
in the literature. Moreover, it is also noteworthy that some of the used benchmark datasets
have been criticized for being too simple and not reflecting real-world programming sce-
narios [Aga+24; Sid+24; YBS24]. Therefore, a robustness evaluation with actual relevant
code and with a focus on low-level languages like C and Rust remains unexplored.

1.2.4 Model Modernity
Considering the rapid pace of LLM improvements, the related robustness evaluations
assessed LLMs that are no longer SOTA. According to standardized benchmarks for
SE tasks like problem-based code generation, the capabilities of LLMs have improved
significantly in recent years [Zhe+23; LM24]. While the first code-related LLMs struggled
with basic programming problems, today’s models obtain much higher correctness scores.
In some cases, modern LLMs even produced better results than a human reference [HJ24].
That raises the question of whether prior conclusions about robustness remain applicable
to the models used today. Although knowledge about increased performance should not
be taken as evidence of increased robustness, the true robustness of modern models can
only be understood by explicitly testing for it. Hence, an evaluation with modern SOTA
LLMs needs to be conducted.

1.2.5 Unexplored Aspects of Robustness
Besides the clear research gaps that mostly arise from previous works not being up-to-date
or focusing on other programming languages and use cases, there are nuances of robustness
that are undiscovered in related robustness evaluations.

1. The generate-and-check pattern for code translation allows feedback loops for correct-
ing incorrect translations in iterative cycles. Since the robustness of code translation
has not been evaluated yet, the impact of feedback loops on robustness is also unex-
plored. Do feedback loops resolve robustness issues, or do they only affect the general
performance of the translation system?

2. Current robustness works do not contain a methodology to distinguish the model’s
inherent noise and genuine deficiencies in robustness. Wang et al. [Wan+23] bypassed
this problem, by utilizing greedy-sampling, that reduces the nondeterminism of LLMs
and will be explained in Section 2.2.4. However, this could hinder the models from
showing their real potential and is therefore not commonly used in practice [Hol+20].
A robustness evaluation relevant for practical application has to account for the
“normal” stochastic nature of LLMs.

3. Current publications investigated the similarity of the input variations that are
used in the robustness evaluation, for the sake of proving their semantic similarity
and naturalness [Wan+23; Mas+23; Imp+25; Yan+23a]. However, they did not
investigate whether input similarity correlates with robustness. The intuition would
be that less similar input variations cause stronger robustness deficits than highly
similar inputs. If this is a real phenomenon remains to be explored.

This overview details that there is a significant research gap for the systematic and
comprehensive robustness evaluation of modern LLMs in the context of C-to-Rust code
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translation, which calls for an evaluation framework that addresses all the mentioned
aspects and provides a differential analysis of the different nuances of robustness.

1.3 Research Questions and Contributions
The previous sections gave the information to detail the necessities required to explore the
existing research gaps. Specifically, the goal of the thesis is the development and application
of a comprehensive robustness evaluation framework that enables a multidimensional
analysis of the relevant aspects when translating C code into Rust. These dimensions
reflect (i) the sensitivity of the code translation system to various input variations, (ii)
differentiation between nondeterministic fluctuations and genuine robustness deviations,
(iii) the feedback loops’ impact on robustness, and (iv) the correlation between input
similarity and performance deviation.

This raises the discussion of the following main RQ:

RQ1: “What methodologies and components should be integrated into a comprehensive
evaluation framework to assess the robustness of an LLM-based code translation system?”

The upcoming chapters of the thesis elaborate a systematic methodology that presents
components that are part of such an evaluation framework. This includes the identification
and implementation of a diverse set of perturbation strategies reflecting real-world relevant
input variations. This involves strategies that have been established in robustness evaluation
works or strategies that have been introduced in another domain, such as source code
plagiarism detection or data augmentation. Moreover, the thesis proposes additional input
variation techniques. To quantify the robustness the framework applies a robustness metric
of Wang et al. [Wan+23] and introduces a new metric. By applying the proposed framework
on an existing SOTA code translation system [QHW25] with well-established LLM (i.e.,
GPT-4o-mini [Ope24a]) and testing it with a dataset including real-world code snippets,
the thesis examines whether the presented methods enable a comprehensive robustness
evaluation.

The implementation and application of such a framework is the main objective of this
thesis. However, the components of the framework can be leveraged to examine in-depth
aspects of robustness that have received little attention so far. These aspects are addressed
by the following Research Questions (RQs):

RQ2: “How does one differentiate between inherent LLM nondeterminism (noise) and
true robustness deficits?”

The inherent stochasticity of LLMs can lead to varying performance observations. A
model might succeed and fail for the exact same input in repeated attempts. These
nondeterministic fluctuations, or “noise”, must be accounted for in a robustness evaluation.

A simple comparison of unperturbed results with perturbed results risks misinterpreting
normal performance fluctuations as non-robust behavior. To understand what performance
deviations are normal for a model and what deviations are genuinely caused by varying
inputs, a comprehensive robustness evaluation has to address this question.

Without making this distinction, the evaluation cannot assess whether drops in perfor-
mance are a systematic weakness related to specific input variations or simple statistical
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artifacts.
The methodology of this thesis introduces a statistical approach that tackles this specific

question and enables a more detailed analysis of an LLM’s robustness to input variations.

RQ3: “Does incorporating a feedback loop strategy impact robustness?”

The generate-and-check characteristic enabling feedback loops in code translation raises the
question whether these feedback loops impact the robustness of such systems. Therefore,
the thesis examines whether and how the approach influences the robustness of a code
translation system, contributing knowledge that has not been explored before.

RQ4: “What is the correlation between semantic similarity and perturbation-based
robustness?”

By correlating the translation success with input similarity between the perturbed and
unperturbed input, the thesis investigates whether the robustness to specific perturbations
can be predicted through similarity checks or whether the models remain entirely unpre-
dictable. Recall that the intuition is that more similar inputs should yield more robust
results than perturbations with stronger variations. Addressing this RQ verifies whether
this intuition holds.

RQ5: “Are robustness results consistent using different LLMs?”

Lastly, the thesis investigates whether the conclusions about specific aspects of GPT-4o-
mini’s robustness transfer to other SOTA LLMs (GPT-3.5-turbo [Ope23], Phi-4 [Abd+24],
and Qwen2.5-Coder-14B [Hui+24]) and what implications this has for LLM-based code
translation.

1.4 Outline
Chapter 2 presents the theoretical foundations that are relevant for the understanding
of the thesis’s methodology and experimental design. This involves fundamentals about
traditional code translation, as well as the basic functionality of LLMs. Furthermore, the
chapter explains common evaluation benchmarks, metrics, and findings. In addition, the
chapter details SOTA LLM-based code translation approaches and verification techniques.
Moreover, it provides a formal definition for robustness that is the foundation for the
robustness evaluation in this thesis.

Chapter 3 gives an overview of the current state of SE-related robustness works, which
are the basis for the proposed methodology of this thesis. This also includes a critical
discussion of existing research that underpins the identified research gaps.

Chapter 4 explains the functionality of the proposed framework. Moreover, it details
how to use the framework to examine each RQs.
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Chapter 5 displays the design of the experiments, including the dataset that is to be
translated. Furthermore, it investigates GPT-4o-mini’s baseline performance, which is
later used as a reference to assess robustness.

Chapter 6 examines the general robustness of GPT-4o-mini, without focusing on the
nuanced aspects of robustness. The chapter elaborates, whether the LLM exhibits non-
robust behavior when the system is tasked with the incorporation of feedback loops.

Chapter 7 analyzes if the feedback loops affected the robustness conclusions in Chapter 6
and therefore empirically investigates RQ3.

Chapter 8 looks at how input similarity relates to the success of a translation with
GPT-4o-mini. It therefore extends prior results of Chapter 6 and Chapter 7 to gather
information for RQ4.

Chapter 9 reveals whether the findings of earlier chapters apply to the other LLMs,
enabling RQ5 to be discussed. The chapter concludes whether robustness should be
another dimension to the already multi-factored choice of the right LLM, including cost,
accessibility, and performance, or if robustness results are similar across models.

Chapter 10 summarizes the observations of chapters five to nine and presents the answers
to the RQs. Additionally, the chapter reflects on threats to the validity of the results and
also gives an outlook for future research. By summarizing all information, the chapter can
give a clear answer whether modern LLMs are a “benefactor” or rather a “veritable public
enemy” when they are tasked to translate C code into Rust.



2 Foundations for LLM-based Code
Translation

This chapter presents the theoretical foundations necessary to follow the rest of the thesis.
This includes information about characteristics of C and Rust in Section 2.1, that justify
the need for a C-to-Rust translation. Moreover, this section presents the functionality and
drawbacks of traditional code translation systems. This leads to a brief introduction of the
most important concepts of LLMs, as well as use cases and pitfalls of AI-assisted software
engineering in Section 2.2. To only present the relevant concepts of LLMs together with
their original publication, the chapter relies on extensive LLM surveys that introduce
LLM functionalities and reference initial publications [Zha+23c; Zhe+23; Fan+23]. To
build a foundation for the evaluation of LLM coding capabilities, Section 2.3 highlights
common evaluation benchmarks and explains the most relevant SOTA performance metric.
Lastly, Section 2.4 details approaches for LLM-based code translation, which also includes
presenting relevant LLM-based code translation systems that leverage the generate-and-
check pattern mentioned in Chapter 1. Therefore, the section also includes a thorough
explanation of how the translation can be verified and how this verification can be leveraged
for an automatic refinement process with feedback loops.

2.1 Fundamentals of C-to-Rust Code Translation
Institute of Electrical and Electronics Engineers (IEEE) [IEE90] defines SE as “the applica-
tion of a systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of software”. Thus, it includes the consistent improvements and modernizations
of legacy software to reduce their susceptibility to errors.

2.1.1 Why C to Rust
While the focus of this thesis is the robustness of LLM-based code translation, it is
necessary to reason why translating from C to Rust is highly desirable, and why traditional
automatic approaches fail when doing this.

According to a research project of DARPA1 “the software engineering community has
reached a consensus” to prefer memory-safe languages, “that can reject unsafe programs
at compile time” [DAR24].

Memory Safety Challenges in C

The problem with C is its susceptibility to memory safety issues [DAR24]. That means if
a program accesses memory that it is not supposed to, the program reacts in an undefined
way [AHP18]. This could potentially lead to crashes, but can also show in corrupted data

1The Defense Advanced Research Projects Agency (DARPA) belongs to the United States Department
of Defense and supports relevant research projects, see: https://www.darpa.mil/

https://www.darpa.mil/
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or exploitable vulnerabilities. There are multiple sources highlighting that many of today’s
security vulnerabilities go back to these memory issues. For example 60-70% in iOS and
macOS environments [Keh19], 70% in the products of Microsoft [Cim19], and Google
estimates that 90% of Android vulnerabilities are a result of memory safety issues [Zha19].

While memory safety can be achieved through runtime checks in C, it comes with the
loss of performance and is therefore mostly not deployed in production [Li+25; Nag+09;
Nag+10].

Memory-safe languages work inherently differently and can completely prevent this
class of errors [DAR24]. Instead of causing unpredictable behavior, these languages
are designed to catch illegal memory access at runtime [Jun+18; Gro21] (e.g., Java’s
ArrayIndexOutOfBoundsException [Oraa] or more precisely Rust’s runtime panic on out-of-
bounds access [The21].). That means memory-safe languages “can neither affect nor be
affected by unreachable parts” [AHP18] of memory.

According to Jung et al. [Jun+18], system-level languages like C often provide low-
level resource management at the expense of guarantees of memory safety and therefore
involve a trade-off. However, Rust addresses this trade-off by employing an ownership and
borrowing-based type system that is utilized for safe code, but can also be bypassed in
case of precise low-level control [Jun+18; MI14].

Rust’s Memory Safety Mechanisms

Rust solves these issues primarily through its ownership and borrowing-system. In safe
Rust, the compiler ensures at compile time that every value has a unique owner and that
all accesses strictly align to predefined lifetime rules [MI14]. This prevents pointers from
referring to deallocated memory or concurrent write access, which can cause unpredictable
side effects [MI14]. Furthermore, safe Rust incorporates runtime checks. These checks
prevent undefined behavior for errors that are not covered by the ownership system, such
as index out-of-bounds access [Zha+22]. Instead of undefined behavior, this results in
controlled panics. These are less harmful because they provide a defined error state that
may terminate the program, subsequently preventing it from continuing with corrupted
memory.

However, unsafe Rust allows developers to bypass these compile-time and runtime safety
guarantees to perform low-level operations, but again with the cost of the programmer
actively preventing issues [Jun+18]. While it is possible to write memory-safe unsafe Rust,
like in Rust’s standard libraries [Jun+18], translating the C code into safe Rust is the
preferred and idiomatic goal whenever feasible.

2.1.2 Code Translation Task
The code translation task, also described as transpilation, is a specific form of software
maintenance, where an existing codebase is converted into another, newer programming lan-
guage, to improve attributes like safety, maintainability, or performance, while maintaining
the same functionality, i.e., functional equivalence.

The Requirement of Functional Equivalence

The key requirement and ultimate goal of any code translation is maintaining the functional
equivalence. In detail, this can be defined as “the property of two functions to produce the
same outputs when given the same inputs, yielding the same observable behavior, even if
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their implementations differ syntactically.” [MVC24]. A code translation is only correct
when this characteristic is met, which stresses why the validation of this behavior is a
crucial part of validating code translation.

Traditional Transpilation Techniques

Before the age of LLMs, automated code translation primarily relied on rule-based tran-
spilers [Gui+24; Yan+24b]. These act similarly to compilers, but instead of generating
machine code, they generate source code [IN16].

According to Tomassetti [Tom20], transpilers act in three stages.

1. Parsing stage: The source code in the original language is analyzed by a parser
and transformed to an Abstract Syntax Tree (AST) [Aho+14] representation.

2. Transformation stage: This is the core logic where the actual translation is per-
formed. It involves traversing the source AST and applying predefined transformation
rules to convert the source AST into an equivalent AST of the target language. In
difficult translations, there can be more than one iteration of this step.

3. Generation stage: The translated AST representation of the target language is
generated into the source code of the target language.

These transpilers present a way of translating languages of similar abstraction lev-
els [IN16], but they struggle when abstraction levels change, and code is not directly
transferable, which results in unidiomatic code [Yan+24b; Liu+25].

Specific Challenges in C-to-Rust Translation

While C and Rust share roots in imperative systems, they are not trivially translatable.
Legacy C code uses patterns like manual memory management, that have no direct
safe equivalent in Rust’s ownership model [Emr+21]. The traditional approaches are
not designed to analyze and understand the properties of the C code and produce an
equivalent Rust implementation that adheres to the ownership and borrowing system.
Instead, tools like c2rust [Imm19b] simply mirror the existing C into an unsafe Rust
version that bypasses the beneficial safety features [Emr+21].

Emre et al. [Emr+21] found that only 11% of raw C pointers can be converted to safe
Rust by rule-based transpilers, which highlights the difficulty of transferring unsafe C
into safe Rust [Li+25]. In addition, Li et al. [Li+25] name other C patterns that are
forbidden in safe Rust. Specifically, (i) mutable global variables and (ii) unions [GNUb].
Other publications focusing solely on translation capabilities also name pointer aliasing,
switch-case statements, goto statements, or macros that are not trivially translatable [PG24;
Cai+25].

Consequently, not every C file is directly mirrorable to Rust, without a real understanding
of the logic and semantics of those files.

In comparison, a study examined the translation capabilities of non-expert undergraduate
Rust users [Li+25]. They showed that most of the participants succeeded in creating
reasonable, safe translations. However, almost all translations lack a complete functional
equivalence. This might suggest that it is easy to convert most C functionality, but
producing a 100% functional equivalent translation is tedious.
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This motivates the exploration of alternative solutions, like LLMs, with the desire to
automatically generate translations that are idiomatic and functionally equivalent, without
the tediousness of manual translation.

2.2 Large Language Models
LLMs with their ability to process and generate human-like texts present a promising
alternative to the traditional transpilers. Instead of relying on handcrafted translation
rules, LLMs operate based on statistical patterns they learned during the training on large
datasets [Zha+23c]. Specifically, the language models produce the most likely continuation
as output, based on the patterns they learned in training on large datasets. These models
can have hundreds of billions of trainable parameters and show “emergent abilities” that
go beyond simple pattern matching [Wei+22], which explains the broad interest. Since
these models are the fundamental focus of this thesis, the following section explains the
most important concepts to understand how these models work, which inherent tools can
be leveraged for the robustness evaluation and what pitfalls have to be considered.

2.2.1 From Text to Numeric Representations
Since LLMs are statistical models, they can not directly work with text and require
numerical representations to perform mathematical operations [Zha+23c]. Therefore, the
given input text sequence has to be encoded into such a numerical representation. This
conversion heavily relies on these key concepts: (i) tokenization, (ii) embeddings, and (iii)
positional information.

Tokenization

This step aims to convert the raw input text into small sequences of characters, called
tokens [Zha+23c]. While the intuition might be to simply encode single words into numerical
representations, the evolution of language models has shown that the tokenization approach
is superior. In detail, encoding single words would require defining a specific vocabulary
that maps words to unique numbers. However, this vocabulary cannot be infinitely large
and therefore will result in an out-of-vocabulary problem, for words that are not in the
vocabulary. Similarly, it introduces the challenge, how to handle rare words, as the frequency
of words would impact the statistical modeling [SHB16].

Modern LLMs therefore use sub-word tokenization algorithms like byte-pair encoding,
which iteratively builds a vocabulary by repeatedly merging the most frequent pair of
adjacent symbols found in the training dataset2 into a new token [SHB16]. This separation
allows encoding every word, as it is either a result of sub-words or can be produced by
single characters. Furthermore, the frequency aspect of the encoding reduces the raw
word problem, as rare or unknown words get represented by sequences of more frequent
sub-word tokens.

Figure 2.1 displays the tokenization for an exemplary sentence. It details that “LLM”
itself is not represented as a single token, whereas “->” is.

2This training dataset is not necessarily identical to the dataset used to train the model’s parameters,
but it needs to be large to ensure a representative encoding of the most frequent pairs.
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Figure 2.1: Visualizing an exemplary tokenization using OpenAI’s tiktoken [Ope25c] with
their o200k_base vocabulary.

Embeddings

With tokenization, all words can be encoded into a numerical representation. However, this
gives no information about their semantics. For this, an embedding model comes into play.
Early approaches utilized learnable lookup tables [Ben+03] and later publications used
dedicated Neural Networks (NNs) to learn these representations more effectively [Mik+13a].
These models encode the token values into high-dimensional vector representations that
mirror their semantics. Consequently, similar tokens show similar vectors [MYZ13].

This similarity can be quantified using cosine similarity [SWY75a]. This measures the
cosine angle between two similar dimensional vectors 𝑣1 and 𝑣2 [LH13]. Therefore, it uses
the dot-product of two normalized vectors, i.e., Equation (2.1).

cosine_similarity (𝑣1, 𝑣2) =
𝑣1 · 𝑣2

| |𝑣1 | | ∗ | |𝑣2 | |
(2.1)

A cosine similarity close to one indicates a high similarity, as the vectors point almost
in the same direction, whereas minus one indicates vectors pointing in opposite directions.
This geographical representation allows mathematical operations that reflect semantic
relationships. A well-known example that shows the intuition behind embedding vectors
and similarity is:

𝑣king − 𝑣man + 𝑣woman ≈ 𝑣queen

where 𝑣 is the encoded vector representation of the word, and the resulting vector of
𝑣king−𝑣man +𝑣woman has a high cosine similarity to the vector of 𝑣queen . [MYZ13; Mik+13b].

This concept of semantic similarity is a crucial part of RQ4: “What is the correlation
between semantic similarity and perturbation-based robustness?” and is therefore important
to keep in mind for the robustness evaluation framework.

Positional Information

By encoding text into tokens and mapping it to representational embedding vectors a
key information gets lost, namely the original order of tokens. However, this is crucial
for the semantics of the text (e.g., compare “C to Rust” vs “Rust to C”). Therefore, the
token representation is extended by positional information [Zha+23c]. Various methods
have been proposed for this [Zha+23c], and recent models commonly rely on Rotary
Position Embeddings (RoPE) [Su+24]. A technique that encodes the position by applying
position-based rotations to the embedding vectors.

These numerical representations, reflecting semantics and positional information of
tokens, form the input for the underlying neural network architecture, which processes
this information.

2.2.2 Transformer Architecture
Modern LLMs are predominantly based on the transformer architecture proposed by
Vaswani et al. [Vas+17]. This architecture significantly outperformed previous Sequence
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to Sequence (Seq2Seq) approaches based on recurrent neural networks [Elm90] and long
short-term memory (LSTM) [HS97].

Prior Seq2Seq approaches had two major problems (i) fixed-sized input vectors that
prevented the models from processing long input sequences and led to the models forgetting
information from early steps. (ii) the sequential approach could not easily be parallelized,
as each step relied on the states of previous steps, which resulted in inefficient model
training [Vas+17].

The transformer solves these problems by its self-attention mechanism [Vas+17]. This
mechanism enables the model to weigh the importance of tokens for a specific context,
which subsequently reduces the problem of forgetting information and also enables the
processing of all tokens of the sequence in parallel.

The original transformer incorporated an encoder-decoder approach, where the encoder
processes the input and refines it into an internal representation, which is then used by the
decoder to generate the output token by token. This decoder uses a specialized version of
attention, masked self-attention, which only allows to attend to previous tokens [Vas+17].

Popular generative LLMs of today (e.g., GPT series [Bro+20; Rad+19], Phi-4 [Abd+24],
or Llama [Tou+23]) primarily use a decoder-only architecture [Zha+23c]. For the generation
of text, this is preferred because it eliminates the need to train a separate encoder, which
reduces computational and memory costs while producing comparable or even better
performance.

2.2.3 Learning on a Large Scale
While the transformer architecture is the key component of modern LLMs, its promising
capabilities are only due to a large-scale learning process on massive datasets. This process
involves two steps pre-training and fine-tuning [AG24].

Pre-Training

The unsupervised pre-training process builds the foundation for these LLMs and requires
the majority of computation and training time [AG24]. In this step, the model is trained
on massive text-based datasets, which enables it to learn concepts of grammar, context, or
language patterns [AG24; Zha+23c]. A common objective of this training step is language
modeling, which refers to assigning probabilities to sequences of words and predicting
upcoming words [JM25; Zha+23c].

A publication of Kaplan et al. [Kap+20] empirically showed that the performance of
these models heavily depends on scaling, i.e., number of trainable parameters of the model.
Larger models, trained on larger datasets, with more computational power, yield better
results. In addition, at a certain scale, these models showed “emergent abilities”, abilities
that are only present in large models and not in small models [Wei+22]. Both findings are
the core motivation for why modern models strive to increase the scale of both model size
and training data.

Fine-Tuning

After the large-scale pre-training, the model is fine-tuned to a narrower task reflecting
the desired use case [AG24]. A noteworthy example is the fine-tuning of GPT-3 [Bro+20]
to the initial version of ChatGPT [Ouy+22; Ope22b]. Specifically, this step involved
reinforcement learning from human feedback (RLHF), which tuned the model to align
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more to human preferences [Ouy+22]. Instead of fine-tuning all parameters, common
strategies like LoRA [Hu+22], or QLoRA [Det+23], only update certain parameters to
reduce computational costs.

2.2.4 Probability-Based Output Generation
The previous sections explained the pivotal concepts of encoding text into semantic numer-
ical representations that are processed by a transformer-based architecture and trained on
a large scale. To generate their output, LLMs employ decoding strategies [Zha+23c].

Since the language modeling task trained the model to predict the next token based
on the previous tokens, the model yields a probability distribution for likely tokens. The
simplest decoding strategy is greedy sampling, also denoted as greedy search. This approach
always selects the token with the highest likelihood. However, it has been shown that this
strategy is not optimal and tends to create repetitive outputs [Hol+20].

Therefore, various decoding strategies have been proposed, a common one being
temperature-based sampling [AHS85; Hol+20]. This sampling strategy scales the out-
put probabilities with a temperature parameter, which impacts the probability distribution,
and then randomly chooses one token based on the probabilities. In detail, low temperature
values produce more deterministic results than high temperature values. A commonly used
temperature value in the literature is 0.7 [Ouy+22; Hol+20; Rad+19; FLD18].

This randomness factor has to be considered for the robustness evaluation, as it adds a
non-deterministic character, which impacts the reliability and consistency of a model’s
outputs.

2.2.5 LLMs in Software Engineering
The presented concepts form the basis of LLMs. However, this basis was specifically
developed for human language and not necessarily for SE and programming. This section
details certain aspects that are important for the SE capabilities of LLMs.

Naturalness of Code

As mentioned before, with large-scale pre-training and self-attention, the models are able
to capture concepts like grammar and patterns of natural language. However, similar
to the grammar and patterns in natural language, programming languages also involve
repetitive patterns and structures [Hin+16]. Hindle et al. [Hin+16] show that software code
is rather simple and repetitive, which is highly beneficial for a probability-based estimation
of a next-token prediction (i.e., language modeling). Consequently, by training LLMs on
existing codebases, the models can also learn a next-token probability for coding tasks, by
learning the concepts of syntax and semantics of programming languages [Fan+23].

Software Engineering Use Cases of LLMs

Fan et al. [Fan+23] state that LLMs have the potential to impact the entire software
development life cycle. One of the most prevalent use cases is plain code generation or
code completion, which aims to generate code based on an instruction or comments. A
well-known tool for this application is GitHub Copilot [Che+21]. Peng et al. [Pen+23]
investigated the performance increase of developers when using GitHub Copilot. They
showed that developers were 56% faster developing a non-trivial programming task than a
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control group without LLM assistance. Furthermore, a recent survey demonstrates that AI
programming assistance has a high acceptance rate among developers [Sta23]. Specifically,
this survey states that 92% of US-based developers already use AI coding tools in and
outside of their work.

Besides plain code-generation, Fan et al. name publications in software-testing [Lem+23;
Sch+23], where LLMs are leveraged to generate test cases and improve test coverage.
Furthermore, LLMs show promising results in software-repair [XZ22; Jia+23], automatically
debugging and fixing code based on instructions or static analysis. Moreover, there are works
in requirements-engineering [Zha+23a; Luo+22] that examine LLMs capabilities extracting
requirements out of documents, or detecting inconsistencies in defined documentation.

Key Challenges for LLMs in Software Engineering

While the broad usability and the emergent abilities imply a high potential of LLMs, they
also have boundaries and drawbacks. A known problem of LLMs in general is hallucination,
which describes the model outputting false information [Yan+24d; Fan+23]. In the case of
SE, the same issues can be found [Ma+23; Fan+23]. Specifically, this means, while the
generated code seems plausible, it may be incorrect or contain bugs [Fan+23].

There are several works that show LLMs can produce low-quality code [Par+24; GG24].
Therefore, the creation may be more efficient at first, but with the cost of worse main-
tainability over time [Zie+24]. In addition, there are works that point out LLMs might
produce code with more code smells [Liu+24] and higher cyclomatic complexity [YOT22].

Besides low-quality code, it has been shown that LLMs can introduce bugs [Per+23;
Jes+23]. This may show in syntax errors and code that is not compilable [Tam+25],
and therefore is directly noticeable. Unfortunately, LLMs can also produce incorrect
logic [Din+23], miss certain edge-cases [Tam+25], or hallucinate methods that call non-
existing Application Programming Interfaces (APIs) [Tam+25].

Furthermore publications have shown that LLM generated code can involve security
vulnerabilities [Sch+21; ANA23; Pea+25; Per+23].

These findings highlight that the promising capabilities of LLMs should be enjoyed with
caution, which underpins the need for thorough benchmarking and testing of these models.

2.3 Evaluating LLMs in Software Engineering
Publicly evaluating and comparing approaches is a key driver for the tremendous progress of
machine learning. Specifically, benchmarks like ImageNet [Rus+15], or MS COCO [Lin+14]
enabled a standardized evaluation for image processing and object-detection tasks, which,
according to public leaderboards, led to approaches with significantly increased accu-
racy since their release [Cod25a; Cod25c]. The same observation can be made for the
GLUE benchmark [Wan+19] in Natural Language Processing (NLP). Public leaderboards
reveal thousands of publications referencing GLUE, improving and comparing methodolo-
gies [Cod25d].

It is therefore reasonable to expect that public and standardized benchmarks for AI-
based SE will accelerate innovation as well. Indeed, already today’s leaderboards indicate
drastic improvements made in the last few years [Cod25e].
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2.3.1 Common Code Generation Benchmarks
There are various benchmarks evaluating AI-based SE tasks. Some of them are also
relevant for publications specifically assessing robustness of LLMs, which are explained in
Chapter 3.

HumanEval

HumanEval has been introduced by OpenAI together with Codex, an LLM specifically
fine-tuned on code [Che+21]. According to Fan et al. [Fan+23], this publication led to an
explosion in LLM-based code generation.

In detail, this benchmark consists of 164 python programming problems with unit tests.
Each of this problems contains a function signature and a docstring that describes the
functionality of the function that has to be generated. The LLMs have to complete the
function based on the signature and its docstring explanation.

While HumanEval presents a common standard for the evaluation of code generation
capabilities, recent publications express criticism. These works mention that this benchmark
does not accurately reflect coding capabilities in real-world environments and does primarily
consist of coding interview-style problems [Aga+24; Sid+24; YBS24]. Moreover, there are
concerns that modern LLMs might have used HumanEval’s dataset for pre-training, which
leads to data leakage and would prevent a genuine evaluation [Mat+24; Sid+24].

MBPP (Mostly Basic Python Problems)

Mostly Basic Python Problems (MBPP) [Aus+21] is another popular benchmark and is
similar to HumanEval. It contains roughly 1000 short Python tasks, consisting of docstrings
and unit tests. In addition, the criticism of HumanEval also applies to MBPP [YBS24;
Sid+24; Mat+24].

APPS (Automated Programming Progress Standard)

Automated Programming Progress Standard (APPS) [Hen+21] is another common bench-
mark. It consists of 10,000 Python coding problems and unit tests, collected from publicly
available coding websites, such as Codeforces [Cod], or Kattis [Kat]. According to Roziére
et al. [Roz+23], the prompts of this benchmark are less direct and more complex in
comparison to HumanEval or MBPP. However, while APPS generally is more challenging,
it is also affected by data leakage [Zho+25b] and therefore does not accurately reflect code
generation performance for all LLMs.

Others

As the focus of this thesis is on code translation, it is worth mentioning that there are also
benchmarks specifically focusing on this use case [Yan+23b; Zhu+22]. However, since they
are not relevant for current robustness evaluations, they are not discussed in more detail.

2.3.2 Performance Metrics
While there are different performance metrics for different benchmarks, there is one
that is highly relevant among benchmarks: pass@k. This metric was introduced in Hu-
manEval [Che+21] and has since then been used as a standard performance measure and
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(a) All 𝑛 = 20 total solutions containing 𝑐 = 4
correct solutions.

(b) Randomly selecting 𝑘 = 5 solutions from
the 𝑛 = 20 solutions.

Figure 2.2: Visualization of pass@k for an example with 𝑛 = 20 including 𝑐 = 4 correct
solutions, when choosing 𝑘 = 5, resulting in pass@5 = 1 − (

20−4
5 )
(20

5 )
= 0.718.

referenced in various LLM publications [Roz+23; Li+23; Luo+24] and benchmarks [Aus+21;
Hen+21; Du+24].

The objective of pass@k is to estimate the likelihood for a successful generation when
performing multiple runs. Success mostly refers to passing the unit tests for a given
problem, and therefore measures functional correctness. However, the metric is not limited
to that and can essentially be applied in any context where a binary success criterion can
be defined. For example, Zeng et al. [Zen+24] employ a pass-syntax@k, a pass-compile@k,
and pass-all@k, that measure the performance in distinct aspects.

In detail, pass@k is defined as Equation (2.2) [Che+21]. Given an unordered set of 𝑛
solutions containing 𝑐 correct solutions, pass@k estimates the probability of selecting at
least one correct solution when choosing 𝑘 samples from all 𝑛 runs [Che+21; Zen+24].
Figure 2.2 illustrates an example for pass@5 with 𝑛 = 20.

pass@k = E𝑥

[
1 −

(𝑛−𝑐
𝑘

)(𝑛
𝑘

) ]
(2.2)

This metric is the basis for the metrics used in this thesis and for other robustness
evaluation metrics that are introduced in Chapter 3.

2.3.3 General Purpose vs. Code LLMs
Chen et al. [Che+21] not only published HumanEval, but also Codex, an LLM especially
fine-tuned for code generation. Besides Codex there are various other LLMs that were
fine-tuned [Cha+23] or even pre-trained [Li+23] on code.

Therefore, the literature commonly distinguishes between general purpose LLMs and code
LLMs. The general purpose LLMs like GPT-4o-mini [Ope24a], or GPT-3.5-turbo [Ope23],
are trained for versatile use cases, including question-answering and programming [Zhe+23],
and because of their large size and their emergent abilities, they generalize well to pro-
gramming tasks. Besides these very large models, a recently published smaller model
Phi-4 [Abd+24] also shows promising programming capabilities. The authors used high-
quality and synthetic data to yield great capabilities without a very large model size.

LLMs specifically trained on code and programming are referenced as code LLMs [Zhe+23].
Prominent examples, besides Codex, are Code Llama [Roz+23], StarCoder [Li+23], or
the recent Qwen2.5-Coder [Hui+24]. Qwen2.5-Coder is a SOTA open-source LLM that
extended the pre-training of its base model Qwen2.5 [Yan+24c] and is available in different
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sizes (i.e., 0.5B, 1.5B, 3B, 7B, 14B, 32B).
Having general purpose LLMs and code LLMs raises the question of which one performs

better for programming tasks. Zhen et al. [Zhe+23] conclude that there is no definitive
answer to this question. Code LLMs fine-tuned to SE-tasks normally outperform their
base models [Zhe+23]. In addition, they state that code LLMs mostly outperform the
general purpose LLMs with a similar number of parameters.

However, more recent publications show that the large general purpose models like
GPT-4 outperform many SOTA code models on certain benchmarks or tasks [Du+24;
Niu+24; Guo+24].

2.4 LLM-based Code Translation
This section aims to detail information specifically on LLM-based code translation and
gives an overview of SOTA LLM-based C-to-Rust translation systems. Section 2.1.2
highlighted common problems with rule-based transpilers. Specifically, those often produce
non-idiomatic code and also fail to leverage Rust’s safety features. Therefore, the learning-
based LLMs represent an alternative automatic translation approach, which might benefit
from learning patterns of safe Rust and might be able to produce more idiomatic Rust
code as rule-based systems.

While the recent advancements of LLMs in SE and programming are promising, an
idle LLM translation has no correctness guarantee. By contrast to rule-based transpilers,
LLMs are probabilistic generators that predict likely code, but not necessarily correct code,
and can produce hallucinations that might be unnoticed (see Section 2.2.5). Therefore, a
verification of translations and a comprehensive robustness evaluation, that is conducted in
this thesis, are highly necessary. The section starts by explaining common methodologies
for LLM-based code translation and continues with the necessary verification techniques.

2.4.1 Prompting vs Fine-Tuning
The code translation task with LLMs can be approached with two methodologies: (i)
prompting - Zero/Few-Shot or (ii) fine-tuning and training a model specifically for a
certain code translation.

Prompting

The prompting approach leverages LLMs generalization capabilities by directly prompting
the task of code translation. Specifically, such a prompt consists of a natural language
instruction part and source code. The model translates the code based on its vast learned
patterns during pre-training. In detail, this approach can be executed either by (i) Zero-Shot
or (ii) Few-Shot prompting.

Zero-Shot code translation prompting describes that the prompt only contains a natural
language instruction and the code in the original language that has to be translated. An
example is illustrated in the Zero-Shot Code Translation Prompt box. In this approach,
the translation only relies on the model’s pre-training knowledge to perform the task.
However, due to LLMs emergent abilities, this method shows promising results and is used
in multiple code translation publications [Yan+24b; Eni+24; Zho+25a].
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Zero-Shot Code Translation Prompt

Instruction: Translate the following C code to Rust.
Code:� �
int add(int a, int b) {

return a + b;
}� �

Few-Shot code translation prompting is similar to Zero-Shot, but extends the prompt
with positive translation examples. The intuition behind this method is that the LLM learns
the code translation in context and understands the desired output style [Li+24a; DSL25].
An example for Few-Shot prompting is illustrated in the Few-Shot Code Translation Prompt
box.

However, since LLMs are known to be highly sensitive to prompts and structure, it
is not a trivial decision what examples to incorporate in this prompting technique. Du
et al. [DSL25] recently proposed a methodology addressing this problem. However, as it
also impacts the number of processed tokens, the common prompt-based code translation
relies on Zero-Shot [Yan+24b]. Therefore, the thesis referring to a code translation prompt
implies a Zero-Shot code translation prompt.

Few-Shot Code Translation Prompt

Instruction: Translate the following C code into Rust.
Here is an example:
C Code:� �
int is_even(int n) {

if (n % 2 == 0) {
return 1;

} else {
return 0;

}
}� �

Rust Translation:� �
fn is_even(n: i32) -> bool {

n % 2 == 0
}� �

Now translate the following C code into Rust:� �
int add(int a, int b) {

return a + b;
}� �

Fine-Tuning

Another approach for LLM-based code translation is fine-tuning a model specifically
tailored to code translation. This approach utilizes the parameter weights learned during
pre-training and employs a fine-tuning strategy to improve them for the specific use case
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of code translation. There are various methods for this approach, which are presented
below. For a detailed explanation, however, please refer to the original papers. A common
technique is leveraging supervised fine-tuning (SFT) with a specific training dataset
containing ground truth translation pairs [Jan+24]. Other approaches use unsupervised
fine-tuning or self-supervised fine-tuning, which train the model to reconstruct the original
code from a corrupted version [Roz+20]. Furthermore, reinforcement learning from compiler
output and test execution is used to improve the model weights [Jan+24].

Conclusion

While fine-tuning offers a higher specialization and may produce a higher accuracy, it
requires specific data and computation, resulting in higher cost. When considering the
rapid pace at which new and larger LLMs are published, fine-tuning is rather inflexible
and fails to leverage this rapid progress, as it always requires a costly training before new
models can be tested. Therefore, the thesis later evaluates a prompt-based code translation
system.

2.4.2 Verifying LLM Translation
As stated earlier, LLM-based code generation must not be correct. It can, for instance,
lead to incorrect logic [Din+23] or hallucinated methods [Tam+25]. Considering this, only
verifying a translation by checking for compilability is not enough and is only a weak
indicator for specifying a correct translation. A better indicator is the direct verification of
functional equivalence, which is the ultimate goal of any code translation. Other LLMs for
SE scenarios predominantly verify the correctness of a generation by unit tests. However,
this approach requires comprehensive test suites, which are often unavailable for legacy
codebases [Eni+24]. The code translation task comes with the benefit of producing an
equivalent code and not a newly generated algorithm that solves a specific problem.
Therefore, it can leverage a more flexible approach that automatically verifies the input
and output equivalence of a generated code snippet, i.e., a generate-and-check pattern.

The generate-and-check pattern enables the opportunity to apply auto-repairing feedback
loops, since failing translations are immediately recognized and can be re-prompted to the
model. Therefore, such a generate-and-check pattern results in both a lower likelihood of
an erroneous translation being undetected and the opportunity to leverage the pattern for
a feedback-approach, which re-prompts the model in case of failure.

This section describes translation verification mechanisms that have been used in
other SOTA LLM-based code translation systems focusing on C to Rust, in particular
FLUORINE [Eni+24] and VERT [Yan+24b].

Differential Fuzzing

Eniser et al. employ differential fuzzing to directly verify translation output in their
code translation system FLUORINE [Eni+24]. The general functionality of a differential
fuzzer is to validate that two programs yield equivalent outputs for the same “randomly”
fuzzed inputs. Eniser et al. name multiple publications that utilize differential fuzzing
to check for functional equivalence [Pet+17; Guo+18; NNP20]. However, they state that
cross-language differential fuzzing is a different task and is only sparsely found in other
literature. Cross-language differential fuzzing requires executing programs written in
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Figure 2.3: Abstract flow-chart visualization of the differential fuzzing process of
FLUORINE [Eni+24].

different languages, with semantically equivalent inputs, and subsequently comparing their
differently structured outputs.

With FLUORINE, they propose a detailed implementation that addresses this challenge.
The core of their implementation lies in serialization and deserialization into JavaScript
Object Notation (JSON) [Bra17] and an Foreign Function Interface (FFI). Such an FFI is
an “abstraction used for interfacing a programming language with another foreign language
to reuse its libraries” [Chi19].

FLUORINE’s differential fuzzing is visualized in Figure 2.3 and works as follows: It first
utilizes the fuzzing framework bolero, which is based on libfuzzer [Ser16], and generates
type-correct random inputs for the translated Rust function. These Rust input states
are then serialized into a JSON representation, which is subsequently passed to C via
FFI. With this mechanism, the Rust implementation is executed with the direct inputs
generated by the fuzzer, whereas the original C implementation is called via FFI with
inputs derived by de-serializing the equivalent JSON representation.

To compare the equivalence of their outputs, FLUORINE utilizes the same approach.
The output of the Rust function is directly serialized to JSON and the original C function is
serialized into JSON via FFI, whose String representation can then be “directly compared”
for equivalence [Eni+24]. If the JSON strings of both languages are identical, the test case
is considered passed. This leads to the fuzzer generating a new test case, as long as a
specified time budget is not exhausted for the differential fuzzing. In case the JSON files
differ, the differential fuzzer has identified a counterexample that indicates a semantic
mismatch between the original C code and the LLM’s translated Rust code. If there are
no counterexamples identified after the time budget is exhausted, the two functions are
considered functionally equivalent.

This mechanism enables the desired automatic verification for the generate-and-check
pattern, without relying on unit tests. However, Eniser et al [Eni+24] also name limitations
of this process. The bottleneck is the completeness of the serialization and deserialization
of complex and language-specific data types. Functions can only be fuzzed when they are
serializable. Moreover, while the inherent fuzzing mechanism gives a high confidence in the
equivalence results, it cannot give formal guarantees. Despite these limitations, differential
fuzzing presents a valuable and highly autonomous process that can be leveraged for a
generate-and-check approach. The completeness problem can be guarded by analyzing
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whether fuzzing failures are based on counterexamples or due to incompatible functions,
which makes the bottleneck less drastic for a robustness evaluation, only focusing on
performance deviations.

Formal Methods

Besides the differential fuzzing approach, there also exist formal methods that have
the objective to mathematically prove equivalence, instead of validating it with testing.
Consequently, this approach yields a stronger correctness guarantee than differential
fuzzing.

Such an approach is applied in Yang. et al.’s VERT, an LLM-based C-to-Rust translation
system. Their process starts by transpiling the original C code into a WebAssembly
(Wasm) [Web] representation. Therefore, this step is basically a rule-based translation.
Since this rule-based transpilation is only used for the functional equivalence proof, the
drawbacks of rule-based transpilers, namely unidiomatic and unsafe code, do not negatively
impact this process. The Wasm representation is then translated into Rust by embedding
the Wasm semantics in Rust code with rWasm, a proven method to translate Wasm
into Rust keeping semantic equivalence [BLP22]. The resulting Rust code represents an
unreadable, but guaranteed functionally equivalent representation of the original C code,
that later serves as “oracle” [Yan+24b].

To verify the readable LLM-based Rust translation, VERT utilizes two verification tools
that compare the oracle and the LLM’s translation. The first is Kani, a bounded model
checker that automatically compares the behavior of two Rust programs [Van+22]. Since
the authors encountered multiple cases where Kani was not able to verify equivalence and
resulted in timeouts, they also applied an autoactive verifier, Versus [Lat+23]. This tool
tries to mathematically prove equivalence based on annotations in the Rust code. Since
this verifier relies on manual annotations, it is not fully autonomous.

While the process has a higher correctness guarantee than differential fuzzing, the
not fully autonomous nature restricts the practical application. Consequently, with the
thesis’s objective of a comprehensive robustness evaluation framework, differential fuzzing
is the better choice, enabling a generate-and-check pattern without relying on manual
refinements. Therefore FLUORINE’s differential fuzzing approach forms the basis for
verifying translation correctness, which is explained in Chapter 4.

Iterative Refinement through Feedback Loops

Since the generate-and-check pattern reveals that LLMs do not always produce compilable
or functionally equivalent translations, modern code translation systems like FLUORINE
or VERT leverage the pattern for an auto-repairing, iterative refinement process in case
of failure [Eni+24; Yan+24b].

The basic mechanism behind such a feedback-approach can be described as follows: The
LLM initially generates a translation (iteration one). This translation is then automatically
verified for successful translation. In case the translation is not valid, the system extracts the
reason for the failure (i.e., the feedback). Specifically, such failure reasons can be compiler
or linting errors, which are identified in both FLUORINE [Eni+24] and VERT [Yan+24b].
The compiler and linter give detailed descriptions, code-position, and suggestions for
correction, which can be directly leveraged as feedback. Moreover, the differential fuzzing
or formal verification counterexamples can be used to define feedback [Eni+24; Yan+24b].
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This extracted feedback is then used to create a new LLM prompt, with the objective
that the LLM repairs its erroneous translation. The papers use different strategies to refine
the LLM prompt. VERT adds the counterexamples as test cases and therefore produces an
example similar to a Few-Shot prompt. FLUORINE tries three different repair approaches:
(i) a simple restart, without actually utilizing the feedback, (ii) a basic repair similar to
VERT’s approach, and (iii) conversational repair. The last approach is similar to ii, but
does not remove counterexamples of the previous iteration.

In summary, the used refinement strategies are similar to Few-Shot prompting. However,
the real Few-Shot prompting includes correct examples to improve the model’s capabilities,
whereas the refinement adds incorrect examples to the LLM’s context.

VERT and FLUORINE point out that utilizing feedback loops increases the probability
for a correct translation and is therefore a capability enabled by the generate-and-check
pattern that can be leveraged for improved translation performance. However, while the
refinement clearly improves the translation success, the authors have not explored whether
such a strategy impacts the robustness of the LLMs. Thus this is reflected and assessed
with RQ3: “Does incorporating a feedback loop strategy impact robustness?”



3 Related Work
Chapter 2 established the foundations of LLM-based code translation and detailed its
potential, as well as the challenges that have to be considered. The explained generate-
and-check pattern, with differential fuzzing and feedback loops, has the goal to improve the
correctness of such an AI-based translation system. However, the stochastic nature inherent
in their probability-based output generation raises a different question: the robustness of
these systems. How reliable are these systems when they encounter minor changes in the
input? Are they Sáenz’s “benefactor”, or do they act like a “public enemy”?

Since this examination is the main goal of this thesis, this chapter establishes the
fundamentals for evaluating robustness. This includes a detailed definition of what is
meant by the term robustness of an LLM-based system in Section 3.1. Furthermore, the
chapter presents other robustness evaluation frameworks, relevant in today’s literature
(Section 3.2). Since these frameworks always utilize a modification of inputs, subsequently
described as perturbation, Section 3.3 shows sources for perturbation strategies in the
literature that can be leveraged for the proposed robustness evaluation framework of this
thesis. Lastly, Section 3.4 summarizes the relevant work, shows research gaps, and identifies
the necessary capabilities of the thesis’s framework to address these research gaps.

3.1 How to Define Robustness
Before detailing related work in the area of robustness evaluation, it is necessary to define
robustness at first. A common definition for robustness is the “degree to which a system or
component can function correctly in the presence of invalid inputs or stressful environmen-
tal conditions”, which stems from ISO/IEC/IEEE 24765:2017 a norm that “provides a
common vocabulary applicable to all systems and software engineering work” [ISO17]. How-
ever, considering the nondeterministic fluctuations of LLM-based systems, this definition
is not perfect. Consequently, there are various other and newer definitions of robustness
that involve AI-based systems. The following enumeration lists available definitions and
concludes afterwards which fits best to the robustness of an LLM-based code translation
system.

• ISO/IEC 22989:2022 Artificial intelligence concepts and terminology: “ability of a
system to maintain its level of performance under any circumstance” [IC22]

• ISO/IEC TR24029-1 Assessment of the robustness of neural networks: “ability of an
AI system to maintain its level of performance under any circumstances” [IC21]

• IEEE Std 3168 Standard for Robustness Evaluation: “robustness of natural language
processing (NLP) service: Capability of a natural language processing (NLP) service
to maintain its level of performance in processing corrupted texts and adversarial
texts.” [IEE24]



26 3. Related Work

• ISO/PAS 8800 Safety and artificial intelligence: “AI robustness: ability to maintain
an acceptable level of performance under the presence of semantically insignificant
but reasonably expected changes to the input” [ISO24]

Even though the definitions are not identical, they describe similar goals. A system
is considered robust when it maintains its expected level of performance under any
circumstances, such as invalid inputs, adversarial attacks, or semantically insignificant
but reasonably expected changes to the input. Specifically, the definitions mostly contain
the terms “its level of performance” or “acceptable level of performance”, which in
contrast to ISO/IEC/IEEE 24765:2017’s “function correctly” leave room for the inherent
nondeterministic fluctuations of AI-based systems.

In detail, this thesis seeks to evaluate the robustness of an LLM-based code translation
system and therefore assesses a generative AI for a specific practical real-world use case.
Since this assessment only considers real-world usage, there is no need to evaluate a
model’s performance on adversarial inputs. Adversarial attacks typically try to maximize
a model’s loss function, to heuristically produce the most misleading inputs [Sze+14]. A
developer or company that uses a code translation system has no motivation to attack
the model with adversarial inputs. However, they could try to translate inputs with
accidental typos, formatting changes, refactored and differently structured code, which
could cause unforeseen performance deviations that do not adhere to “its acceptable level
of performance”. Summarizing these definitions in light of the robustness of LLM-based
code translation, which leads to distinguishing between Sáenz’s “benefactor” or “enemy”,
the definition considered in this thesis is as follows:

Robustness of LLM-based Code Translation
“An LLM-based code translation system is considered robust if it is able to maintain
an acceptable and expected level of performance when prompted with semantically
insignificant but reasonably expected changes to the input.”

3.2 Robustness Evaluation
While Chapter 2 presented the necessary fundamentals for going forward in this thesis,
it is additionally necessary to display other publications focusing on a robustness eval-
uation in LLM-based code generation. This section presents the relevant works in this
area. While robustness has also been studied in other contexts, such as NLP [MK22;
Oma+22; Ahu+24], image recognition [Mod22; MBK23], and classical machine learning
tasks primarily operating on tabular or time series data [Sie+23], these areas are out
of scope for this thesis. This section specifically focuses on robustness in the context of
LLM-based code generation, which enables the identification of research gaps in Section 3.4
and additionally gives inspiration for the development of a framework that closes these
gaps.

3.2.1 ReCode: Robustness Evaluation of Code Generation Models
“ReCode: Robustness Evaluation of Code Generation Models” [Wan+23] presents a bench-
mark specifically designed to assess the robustness of code generation models. It introduces
a robustness evaluation approach for code generation models that incorporates metrics
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capturing worst-case performance across perturbed inputs. Although the paper focuses on
docstring-based code generation and plain code completion, its underlying methodology
can be adapted to address the research questions of this thesis. Therefore, this particular
publication is described in high detail.

Approach

ReCode is build on existing code generation benchmarks such as HumanEval [Che+21],
and MBPP [Aus+21] (see Section 2.3.1). These benchmarks require the generation of code
either from docstrings or via problem-specific prompts, which are subsequently verified
using unit tests. That means, for each sample (either docstring or problem-specific prompt),
there exist unit tests to verify the correctness of the LLM’s output.

To leverage these datasets for a robustness evaluation, the core idea of ReCode is to
systematically perturb input prompts using various strategies that aim to preserve semantic
meaning and naturalness, to get results that are likely to appear in practice. For a more
detailed assessment, the paper differentiates perturbations into four categories, based on
the target the perturbation aims to create change: docstrings (10 strategies), function
names (6 strategies), code syntax (6 strategies) or code format (6 strategies).

Given semantically similar yet structurally different prompts enables the evaluation and
comparison of a model’s performance across diverse perturbation strategies, which can
ultimately be used as a measure of robustness. Specifically, the pass@k results for the
various perturbation strategies can be used to determine whether, and to what extent,
particular strategies affect the success on the unit tests (functional correctness).

ReCode utilizes multiple stochastically generated perturbation strategies. More precisely,
this refers to perturbations that can result in different modifications for an identical original
input. Since each stochastic variation can potentially affect the LLM differently, ReCode
creates multiple samples for each perturbation. In detail, ReCode creates 𝑠 randomly
perturbed prompts and measures the worst-case performance across each group of 𝑠

perturbed prompts for a single perturbation strategy. In their paper, a model is considered
robust for a specific perturbation if and only if it generates a correct solution for all 𝑠
perturbed prompts, which the authors describe as a worst-case approach.

Robustness Evaluation Metrics

In order to quantify their definition of robustness, which incorporates the different variations
per prompt, ReCode introduces three novel metrics for robustness evaluation.

Robust Pass𝑠@k (RP𝑠@k) Robust Pass𝑠@k (RP𝑠@k) extends the standard pass@k metric
by inlcuding the idea of a worst-case performance measure across 𝑠 randomly perturbed
prompts.

For an original prompt 𝑥1, a single perturbation strategy is applied to create 𝑠 perturbed
prompts, i.e., 𝑥1, . . . , 𝑥𝑠. For each perturbed prompt 𝑥 𝑗 , the model generates 𝑛 solutions,
leading to a total of 𝑛 · 𝑠 generated solutions 𝑓𝑖 (𝑥 𝑗 ), where 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑠. This
metric specifically aligns to their worst-case robustness definition: a task is considered
generated correctly under a specific perturbation only if it is correct for all 𝑠 perturbations

1Also described as a task to avoid confusion when working with perturbed prompts and multiple 𝑛

solutions.
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of the same perturbation strategy, where correctness is quantified by passing unit tests.
According to this, a correct solution is defined as:

𝑐𝑖,𝑠 (𝑥) =
{

1, if 𝑓𝑖 (𝑥1), . . . , 𝑓𝑖 (𝑥𝑠) are all correct,
0, otherwise.

The number of robustly correct solutions is given by summing over all worst-case
aggregated outputs:

rc𝑠 (𝑥) =
𝑛∑︁
𝑖=1

𝑐𝑖,𝑠 (𝑥).

Following the standard pass@k definition, RobustPasss@k is defined as Equation (3.1):

RP𝑠@k = E𝑥

[
1 −

(𝑛−𝑟𝑐𝑠 (𝑥)
𝑘

)(𝑛
𝑘

) ]
. (3.1)

Thus, RP𝑠@k represents the probability that, for a randomly chosen task 𝑥, at least one
of the 𝑘 randomly selected outputs is robustly correct, i.e. correct for all 𝑠 perturbed
prompts. Therefore, higher values of RP𝑠@k indicate a greater likelihood of consistently
robust performance.

Robust Drop𝑠@k (RD𝑠@k) Robust Drop𝑠@k (RD𝑠@k) measures the relative performance
degradation of a model under perturbed prompts compared to its original performance.
Given an original prompt 𝑥 and its perturbed versions 𝑥1, . . . , 𝑥𝑠 for a single perturbation
strategy, RD𝑠@k is defined as Equation (3.2):

RD𝑠@k =
pass@k − RP 𝑠@𝑘

pass@k . (3.2)

Higher RD𝑠@k values signal greater sensitivity to input variations leading to performance
variations, whereas values closer to zero suggest robust behavior, with few performance
deviations under the perturbation.

Beyond these metrics, ReCode introduces a third metric, namely Robust Relative𝑠@k
(RR𝑠@k). However, its underlying concept is not relevant for this thesis. Specifically,
the metric accounts for single perturbed solutions deviating from their unperturbed
counterpart, in both negative and positive deviations. During the development and testing
of the thesis’s framework, RR𝑠@k was perceived as unintuitive and not necessary to include,
as RP𝑠@k also indicates whether a model improves or worsens under a perturbation. More
information and the detailed definition of this metric can be found in the original paper of
ReCode [Wan+23].

Validating Perturbations

A key requirement of ReCode’s core idea is that the perturbed prompts must be natural
and preserve semantic meaning. Outputs of semantically different prompts would most
certainly fail the unit tests, resulting in worse model performance and hence would be
assessed as less robust. Additionally, using perturbed prompts that are not likely to appear
in practice is excluded. The goal of ReCode is to assess an LLM under real-world conditions,
and unnatural prompts are not part of this.
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To verify that this requirement is fulfilled, the paper uses two automatic and one human-
based strategy, where the human-based approach is described as generally more reliable.
For human evaluation, five human annotators are asked to rate naturalness and semantics
for a random sample of prompts. This is a tedious and time-consuming approach, especially
for very large datasets, which motivated the exploration of automatic strategies. The two
automatic approaches use the metrics cosine similarity and CodeBLEU [Lu+21; Ren+20].
Cosine similarity, described in Section 2.2.1, is used to measure the sentence similarity
based on encoded embedding vectors for docstring and function name perturbations.
The remaining perturbation categories: code syntax and code format, are verified using
CodeBLEU scores. CodeBLEU [Lu+21; Ren+20] is a metric that is normally used to
compare automatically generated code to a reference solution. It is an adaptation of the
well-established BLEU [Pap+02] metric, which has its origins in machine translation, but
additionally adds aspects for improved functionality when working with code. ReCode
assesses the similarity between the perturbation and the original prompt, using the original
prompt as the reference solution.

Evaluation Results

ReCode involves more than 28 perturbation strategies that were validated for naturalness
and semantic similarity. The publication presents a ReCode-based robustness evaluation for
three different models: CodeGen [Nij+23], InCoder [Fri+23], and GPT-J [Wan21]. During
the time this paper was published, these models represented SOTA for code generation.
However, it should be noted that modern LLM significantly outperform them in terms of
functional correctness on SOTA code generation benchmarks [Zhe+23]. In addition, their
experimental setup evaluated the models with greedy-sampling-based output generation,
which has been shown to hinder the model’s capabilities [Hol+20] and does not fully reflect
how LLMs are normally configured. Yet this enabled the evaluation to reduce the problem
of nondeterministic noise.

By applying ReCode’s methodology on the models, the authors describe multiple
noteworthy robustness findings. First, they discover that a more diversely pretrained model
like CodeGen [Nij+23] results in higher RP𝑠@k values, but with more susceptibility to
relative performance drops under perturbations in RD𝑠@k. Secondly, they observe the same
behavior when comparing different model sizes of CodeGen. Larger models show higher
RP𝑠@k, but simultaneously increase the relative performance drops RD𝑠@k. Another
finding is that the LLMs signal the strongest weaknesses for syntax perturbations, which,
in light of the code-focused variations in this thesis, is particularly relevant. Lastly, since
they evaluate the models on two different datasets, namely HumanEval and MBPP, they
discover that the LLMs robustness is worse on MBPP. They explain that this is due to
MBPP containing more diverse variations in code style, consequently better reflecting the
diverse nature of real-world codebases.

3.2.2 Other Robustness Evaluation Approaches
Although ReCode [Wan+23] represents the most relevant work for this thesis, other
robustness evaluation approaches are also noteworthy.
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Robustness of GitHub Copilot against Paraphrased Instructions

Mastropaolo et al. [Mas+23] examined the robustness of GitHub Copilot by analyzing how
perturbations on natural language instructions affect code generation. At the time of their
work, GitHub Copilot was based on OpenAI ’s Codex [Che+21]. A code LLM fine-tuned
on GPT-3 [Bro+20] for docstring-based code completion. Mastropaolo et al. measured
robustness by comparing the similarity of generated outputs using token-level Levenshtein
distance [Lev66] and CodeBLEU [Lu+21; Ren+20], complemented by assessing correctness
based on unit test results.

The publication’s evaluated use case was function generation given Javadoc [Orab]
descriptions and a method signature. Similarly to ReCode, robustness was assessed by
perturbing the inputs. Specifically, the approach of the paper was to perturb the Javadoc
descriptions using either a deep learning-based paraphrasing model [Zha+20], a back-
translation strategy2, which translates the text into a different language and reverts it
by translating it back again, or by manual paraphrasing. The model was subsequently
prompted with both the original and the perturbed descriptions, and its outputs were
analyzed with the three methods described above.

Their results show that 46% of the paraphrased inputs led to a structurally different
code generation. Moreover, they found that 28% of the functionally correct solutions
were unique to either the original or perturbed input, consequently signaling non-robust
behavior. Beyond that, Mastropaolo et al. find that higher output similarity positively
correlated with functional correctness. They conclude that larger structural differences
often lead to incorrect completions.

This work shows that even slight variations to a prompt can lead to worse model
performance and different results, which underlines the importance of a comprehensive
robustness assessment of SOTA-LLMs. However, this approach only focuses on natural
language instructions, for which LLMs potentially can have a different sensitivity than
for variations of code. In addition, compared to ReCode, this evaluation only assesses
a small number of perturbation strategies. Also, it does not accurately account for the
nondeterministic nature of LLMs. In theory, the model could generate structurally different
outputs for the same prompt. While it is interesting to observe that the model produces
structurally different results for similar prompts, the practical relevance of this observation
depends on the specificity of the instruction. One could argue that different programmers
would also write structurally different functions, given the same task. As long as a result
is idiomatic and functionally correct, structural variation should be considered acceptable.
Neither of which can be measured by comparing the structural similarity between outputs
of different prompts. Furthermore, while the paper demonstrates a correlation between
output similarity and functional correctness, it does not investigate whether a stronger
magnitude of perturbations led to worse functional correctness.

COCO: Testing Code Generation Systems via Concretized Instructions

“COCO: Robustness testing of code generation systems via concretizing instructions”, intro-
duces another approach for the robustness assessment of code generation models [Yan+23a].
Similar to Mastropaolo et al. [Mas+23], COCO perturbs natural language instructions.
However, according to the authors, their novel strategy causes significantly stronger
robustness deficiencies than Mastropaolo et al.’s approach.

2The authors defined this process as Translation Pivoting.
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COCO’s perturbation extracts code features, such as loops, function definitions,
or library imports, out of the generated solutions when prompted with the original
instruction. The identified features are then used to create a more concretized version of
the original instruction. In detail, the perturbed instruction extends the original instruction
by specifying what code features are required and what features are absent. So COCO’s
strategy is to automatically add requirements or guardrails to the prompt, which by
definition results in a semantically similar task. Similar to ReCode and Mastropaolo et al.,
this enables the comparison of unperturbed and perturbed prompts. However, instead of
directly comparing the unit test pass rate against the original prompt, COCO measures
robustness by counting three types of “inconsistencies”. Specifically, they check (i) whether
a model succeeds on the original instruction but fails unit tests under the perturbed one,
(ii) whether a model produces compilable code on the original instruction but fails under
the perturbed one, and (iii) whether a generated code feature is present for the original
instruction, but absent under the perturbation. The more inconsistencies a model produces,
the stronger the robustness deficits of a model.

COCO has been applied to multiple code generation models on previously described
benchmarks, i.e., HumanEval and APPS (Section 2.3.1). A noteworthy finding is that
increasing the number of appended concretized instructions led to stronger robustness
deficits.3 By that, it is the first robustness evaluation that empirically shows that the
magnitude of the perturbation increases robustness deficits. What raises the question
of whether this behavior is specific to their perturbation strategy or a more general
phenomenon in robustness evaluation.

Enhancing Robustness of AI Offensive Code Generators via Data Augmentation

Besides COCO and the work by Mastropaolo et al., a more recent paper focuses on
the robustness of AI offensive code generators4 [Imp+25]. Again, this evaluation applies
perturbations on natural language instructions and compares unperturbed outputs with
perturbed outputs. In detail, the paper utilizes two perturbation strategies: word substitu-
tion and word omission. Word substitution replaces a word with a semantically similar
one, whereas word omission randomly removes a word from the prompt.

The paper utilizes three metrics: Syntactic Accuracy, Semantic Accuracy, and Robust
Accuracy to measure robustness. Syntactic Accuracy quantifies the accuracy of compilable
code. Semantic Accuracy measures whether the output is semantically correct. However,
compared to other approaches, the authors manually judged whether the generated code
was semantically correct. Lastly, Robust Accuracy, introduced by Huang et al. [Hua+21]5,
can be described as RD𝑠@k configured with 𝑛 = 𝑘 = 𝑠 = 1. Applying the perturbations,
the authors discover non-robust behavior, particularly when information from the prompt
is removed by word omission.

Similar to ReCode, this work incorporates cosine similarity to check whether the
perturbations preserve the original meaning. Perturbed prompts that yield a cosine
similarity lower than a predefined threshold are being excluded from the robustness
evaluation. It should be noted that the authors also validated this cosine similarity
approach. To be more precise, they asked 31 human annotators to assess whether the
perturbed prompt is semantically similar to the original instruction. It showed that cosine

3This behavior can be controlled via COCO’s hyperparameters.
4This task describes generating code for offensive security activities like penetration testing.
5A work that evaluates the robustness of AI models converting natural language into machine-readable

formats.
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similarity is a feasible approach to exclude misleading perturbations. Although the authors
admit that cosine similarity is not a perfect solution, they conclude that cosine similarity
is an approach that sufficiently evaluates the effects of perturbations. Considering that the
thesis seeks to incorporate the semantic similarity of perturbations into the evaluation,
this is particularly relevant. To make this framework dynamically applicable to different
datasets, it is necessary to minimize manual interaction.

Adversarial Robustness Evaluation

Beyond the previously described publications, several works focus on adversarial robustness
[Mic+19; Li+19; Che+20; WAV20; Bou+22]. That means instead of using well-intentioned
perturbations, these works specifically design inputs that attempt to mislead the model
by maximizing their loss function for a specific input. Although this is not always easily
realizable, as many LLMs act as black-box models, obscuring their internal loss functions,
approaches have still been developed to generate adversarial inputs. However, this thesis
will not include adversarial perturbation strategies. The goal of this thesis is to evaluate
the robustness of an LLM-based code translation system in a real-world, relevant context.
That refers to a well-intentioned programmer utilizing the system for a code translation
task. Such a programmer has no motivation to forcefully mislead the model to produce
inaccurate translations, making adversarial robustness irrelevant in this context.

3.3 Perturbation Strategies
This previous section indicates that all related robustness evaluations share perturbations
as a common element. Every approach inputs original and perturbed prompts into an
LLM to compare differences in the model’s outputs. While all papers apply different
perturbation strategies, the predominant focus is on perturbations targeting natural
language instructions.

When considering the evaluated use cases, this is reasonable, as instructions are the
pivotal part of problem-based code generation or code completion, and will vary drastically
in practical applications. However, in the context of code translation, such variations in
the instruction are less relevant. A deployed code translation system will only change
in the source language and target language of the translation, but not in the gen-
eral instruction, e.g., “translate the following <source language> code into <target
language>”. However, the code to be translated may involve diverse sets of variations in
practical applications. Therefore, this thesis particularly focuses on perturbations to code

Section 3.2 details that the goal of a perturbation strategy is to produce a transformation
semantically equivalent to the original prompt. As far as is known, ReCode [Wan+23] is the
only robustness evaluation on LLM-based code generation that incorporates code-focused
perturbation strategies. However, most of its proposed perturbations act at a superficial
level, such as renaming identifiers or applying natural language perturbations to docstrings.
ReCode categorized perturbations into four groups: docstrings, function names, code syntax,
and code format. While six perturbation strategies target the code’s syntax, only three of
them actually modify the code’s control flow. The presented categories do not enable a
direct assessment of whether perturbations operate on a superficial or profound level. This
leaves the impression that deeper, more fundamental perturbations may be missing.

Hence, the thesis must investigate additional perturbations to the code. Fortunately,
generating semantic-preserving transformations is not only relevant for robustness eval-
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uations. The literature shows that similar techniques are applied in the areas of Data
Augmentation for code, Code Clone Detection, and Source Code Plagiarism Detection. The
following sections mention possible sources for perturbation strategies that can be referred
to identify other automatic perturbations targeting code.

3.3.1 Data Augmentation
The goal of the Data Augmentation domain is to artificially expand a model’s training
dataset by transforming the existing data. This technique is well-known in computer
vision [KSH12] and is now also adopted to extend code-based datasets. Some publications
propose semantic-preserving perturbations that overlap with some of ReCode’s perturba-
tions, such as converting for loops into while loops or renaming variables [Li+22; YWW22].
However, the literature also shows novel perturbations. For instance, a recent publication
introduced ConditionDup, where logically neutral elements (e.g., && True or || False)
are added to conditional expressions [Li+24b].

3.3.2 Code Clone Detection
Code Clone Detection seeks to identify semantically similar code snippets across a codebase
to support clearing redundancy to improve maintainability and prevent bugs [Dou+23]. A
common way to evaluate these methods is through code transformations, such as adding
dead code snippets or removing comments [Zha+23b].

3.3.3 Source Code Plagiarism Detection
Source Code Plagiarism Detection has similarities with Code Clone Detection, but it
particularly targets intentional modifications of existing code to obscure plagiarism. In
order to be practically relevant, these systems must be robust against significant and not
well-intentioned modifications. A programmer attempting to plagiarize code will likely
go beyond renaming variables. The programmer might combine multiple transformation
strategies to create functionally equivalent but syntactically distinct code.

To classify the magnitude of such functional equivalent modifications, Faidhi and
Robinson [FR87] proposed a methodology consisting of six levels of program transformation.
These levels go from superficial changes (e.g., comments and indentation) to more profound
modifications to decision logic and control flow.

Figure 3.1 gives an illustration of the proposed levels and details that each higher
level includes all modifications of the lower levels. Level I includes changes to comments
and indentation. Level II extends Level I by including changes to identifiers, such as
renaming variables, functions, or constants. Transformations in Level III involve changes
to declarations, which means the introduction of unused constants, for instance. Level
IV goes beyond that and includes modifications to functions, such as extracting code
blocks into separate functions or changing method signatures. Level V is described as
“transformation of semantic equivalents”, which incorporates modifications that transform
a while loop into an equivalent for loop and vice versa. Finally, Level VI includes the most
profound modifications, including changes to decision logic and expressions, such as the
ConditionDup [Li+24b] perturbation mentioned in Section 3.3.1).

These levels provided a basis for selecting perturbation strategies for SPPlagiarise [CLS19].
SPPlagiarise simulates Java code plagiarism by automatically applying perturbations
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Figure 3.1: Six levels of program transformations, inspired by [FR87]

from levels I to V. This paper introduced various Java-specific perturbations that go
beyond simple identifier renaming. Consequently, their work inspired a great number of
the strategies explored in this thesis. The particular perturbation strategies that have been
used for this thesis will be explained in the next chapter. However, before presenting the
methodology of this thesis, it is necessary to give an overview of the related work and show
the unexplored gaps, which should be subsequently solved by the proposed methodology.

3.4 Discussion of Related Work in Context of the
Research Gaps

When comparing the relevant related works in Table 3.1, it turns out that there are
multiple strategies to assess a model’s robustness in code generation. While they are all
interesting in themselves, there remain unexplored research gaps. The thesis’s introduction
specifically mentioned these research gaps: (i) robustness to instructions vs robustness to
code, (ii) robustness when translating code, (iii) programming languages and benchmark
complexity, (iv) model modernity, and (v) unexplored aspects of robustness. This section
discusses the different works in the context of the research gaps and defines the goals for
the thesis’s evaluation framework.

3.4.1 Robustness to Instruction vs Robustness to Code
Table 3.1 demonstrates that most papers perturb instructions, which makes sense given
their respective use cases, where code is not always included in the LLM prompt. In
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Paper Use Case Perturbation
Target

Metric Similarity Model Dataset Language

ReCode
[Wan+23]

Docstring,
Task-based

Instructions,
Comments,
Code

RP𝑠@k,
RD𝑠@k,
RR𝑠@k

Cosine Simi-
larity, Code-
BLEU, Hu-
man Review

CodeGEN,
InCoder,
GPT-J

HumanEval,
MBPP

Python

Mastropaolo
et al.
[Mas+23]

Docstring,
Function
Signature

Instructions Structural
Similarity,
Functional
Correctness

Levenshtein,
CodeBLEU

Codex Open-Source-
Projects

Java

COCO
[Yan+23a]

Task-based Instructions Inconsistency
Count

CodeBLEU GPT-3,
GPT-3.5,
CodeGEN,
CodeRL,
InCoder,
PyCodeGPT,
GPT-2,
Code-T5,
CodeGen,
InCoder

HumanEval,
APPS

Python

Improta et al.
[Imp+25]

Task-based Instructions Syntactic
Accuracy,
Semantic
Accuracy,
RD@k

Cosine Sim-
ilarity, Hu-
man Review

Seq2Seq,
CodeBERT,
CodeT5+

Exploit-db,
Shell-storm

Assembly

Table 3.1: Comparison of relevant related work.

the context of LLM-based code translation, it is more interesting to investigate whether
variations of the inputted code (such as formatting, variable names, and comments) cause
non-robust behavior. While ReCode is a publication that includes both perturbation
strategies on instructions6 and on perturbation strategies on code, their perturbation only
sparsely modify the code’s control flow. Therefore, it lays a good foundation for the effects
of perturbations on code, but could be extended to cover a broader range of code-focused
perturbations. This thesis will adopt the core approach of ReCode and extend the number
of perturbation strategies, shifting their focus to perturbations that are more relevant for
code translation.

3.4.2 Robustness When Translating Code
As Table 3.1 shows, none of the existing studies specifically focus on code translation.
Therefore, the robustness of LLMs in code translation is completely unexplored. Recalling
Nezhurina et al. [Nez+24], an LLM’s capabilities in different domains should not be directly
transferred to other presumably similar domains, as this could lead to an overestimation of
its capabilities. Therefore, a robustness evaluation specifically tailored to code translation
is necessary.

3.4.3 Programming Languages and Benchmark Complexity
Table 3.1 details that robustness evaluation has mostly focused on popular languages like
Python or Java [Cas24]. While Improta et al. assess the robustness for generating Assembly,
the thesis’s desired languages C and Rust are absent in the robustness evaluation literature.
With ReCode being the most relevant paper, because of its perturbations to Code, it is
worth discussing its evaluated benchmarks. Recall that ReCode’s results suggested that

6To be more accurate, they include perturbation on docstrings, which in the context of the evaluated
code completion are similar to the natural language instructions observed in code translation.
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robustness is worse on the more complex MBPP (Section 3.2.1). However, both their
evaluated datasets are known to be simple, consisting of straightforward coding interview-
style questions and do not fully reflect real-world programming scenarios [Aga+24; Sid+24;
YBS24]. So they found robustness issues even on datasets with easier problems than the
real world may offer in practical applications. The discussion of RQ5 will investigate
if their discoveries can be transferred to the robustness of modern models, translating
real-world relevant C code into Rust. Furthermore, it has been shown that these particular
benchmarks are used in the training of modern SOTA LLMs [Mat+24]. As a result,
performance on these benchmarks may overestimate a model’s actual robustness when
applied to unseen real-world code. This may not be true for the models evaluated by
ReCode, but when considering the next research gap, the benchmark datasets are not a
good choice for robustness evaluations that seek to be relevant today.

3.4.4 Model Modernity
Table 3.1 lists the evaluated models. A recent survey shows the benchmarking performance
of different models [Zhe+23]. Referring to this comparison, it becomes clear that most of
the evaluated models are now outdated. Zheng et al. show that larger and more recent
models tend to achieve better results in code-related tasks. However, the models assessed
in previous studies are primarily specialized for code generation (with the exception of
COCO, which also evaluated earlier versions of GPT ). Since many general-purpose models
now outperform dedicated code generation models, it would be interesting to investigate
whether they also have robustness issues. One could argue that, because of their larger
general knowledge and improved natural language capabilities, they might be more resistant
to natural language-based perturbations. Therefore, an updated robustness evaluation
with modern models remains to be conducted.

3.4.5 Unexplored Nuances of Robustness
Section 1.2 mentioned nuances of robustness, such as (i) feedback loops’ impact on robust-
ness, (ii) distinguishing between nondeterministic fluctuations and true robustness, as well
as (iii) the correlation between input similarity of perturbations and robustness.

Since no evaluated approach contains iterative repairs with feedback loops, (i) remains
unanswered.

Regarding the nondeterministic fluctuations, ReCode and COCO are publications that
considered this problem. ReCode performed a vast number of runs 𝑛 = 100, 𝑠 = 10 to
reduce the effects of stochasticity. In addition, both ReCode and COCO used greedy-
sampling-based output generation, which reduced the risk of misinterpreting fluctuations
as non-robust behavior. However, since greedy-sampling is a rarely used output sampling
method, their evaluation only bypassed this problem, without delivering a methodology
that allows a distinction between noise and genuine robustness issues for a more common
output sampling strategy.

Lastly, all studies validate their perturbations using similarity scores. However, none
explicitly demonstrate how similarity correlates with robustness sensitivity. COCO is the
only work that provides information that more concretized instructions result in reduced
robustness. For all other perturbations, this has not been investigated. So it is unclear
whether the reduced robustness is primarily driven by the magnitude of input changes or
if it follows other patterns. One would expect a model to perform well on perturbations
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where changes are minor and to perform worse on strongly transformed prompts. Whether
this intuition stands for perturbations on code remains to be seen. If such a correlation
can be found, one could use the similarity to predict the robustness of the model.

3.4.6 Summary and Goals for the Thesis
Examining the existing relevant literature reveals that the general methodology for evalu-
ating robustness is similar across approaches. The basic idea is always to produce prompt
variations (perturbations) that are compared to the LLM’s unperturbed performance.
While this comparison is measured differently for approaches, the general concept of quanti-
fying performance with correctness metrics is relevant for each of the presented approaches.
So, the basic methodology for evaluating the robustness can be adopted from the existing
work. However, the thesis’s methodology has to account for the existing research gaps
that have been shown and propose an approach specifically tailored to C-to-Rust code
translation. That means the framework has to include a large range of differently complex
perturbations targeting code. Some perturbation ideas can be taken from ReCode and
other perturbation-based areas. The six levels of Faidhi and Robinson [FR87] visualized in
Figure 3.1, can additionally be used to classify the perturbation strategies to ensure that
the framework incorporates perturbations of different complexities.

Furthermore, the existing works either ignored the problem of nondeterminism or
employed greedy-sampling. Therefore, the literature misses a strategy for evaluating the
robustness of LLMs when configured with the more relevant temperature-based output
sampling strategy. The thesis will provide a strategy to identify non-robust behavior even
for the nondeterministic temperature-based sampling.

Moreover, the methodology will enable the exploration of the nuances of robustness.
That means it will measure the robustness with and without feedback loops to enable the
discussion of whether feedback loops impact the robustness. Similarly, the methodology
will incorporate the semantic similarity aspect into conclusions about the robustness of a
perturbation.

Lastly, to investigate whether robustness results are model-specific or model-agnostic,
the framework will enable the usage of different LLMs, which additionally can be used to
address the problem of model modernity.

By developing a framework that addresses these goals and by applying it on a real-world
relevant C -dataset, the thesis can explore the RQs that arise due to the identified research
gaps.
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4 Methodology - The Framework
This chapter details the proposed robustness evaluation framework, which is specifically
tailored to LLM-based C-to-Rust translation. The earlier chapters show that, despite the
increasing use of LLMs in software engineering, their robustness to real-world variations
in prompted code remains largely unexplored, especially when translating code.

To explore the research gaps and deliver empirical information to answer the RQs, the
thesis introduces a three-step framework. This framework is based on the basic idea of
prior robustness evaluation works. This means it compares the regular performance of
the system against the performance when prompted with input variations. Therefore, the
entire methodological approach of this thesis is based on the premise that a perfectly
robust model should be invariant to semantically equivalent prompt variations. To be
more precise, a robust translation system should not degrade in translation success when
faced with irrelevant, superficial, or profound prompt variations. Since the related work
missed out on crucial research gaps, the basic methodological approach is extended with
novel aspects to explore the research gaps. Specifically, each component of the framework
contributes to answering the RQs. By demonstrating what is necessary for a comprehensive
robustness evaluation, the overall framework design, including its components, addresses
RQ1. RQ2 asks “How does one differentiate between inherent LLM nondeterminism (noise)
and true robustness deficits?”

While this is not directly incorporated as a component, the thesis proposes a methodology
for application of the framework which helps to differentiate between model nondeterminism
and true robustness deficits (Section 4.5). Furthermore, the framework involves a feedback
loop approach for RQ3 and also includes a semantic similarity analysis to account for RQ4.
Lastly, the framework’s model-agnostic design allows a comparison of robustness across
different LLMs (RQ5).

By systematically applying this framework and analyzing the resulting data, this thesis
provides the necessary evidence to address all research questions comprehensively.

4.1 Overview of the Framework
Figure 4.1 illustrates that the framework follows three separate steps. In the beginning, it
requires a benchmark dataset consisting of multiple C code files as input. Recalling the
research gap “programming languages and benchmark complexity”, the framework directly
enables choosing a more complex and real-world relevant dataset, which will be discussed
in Chapter 5. The dataset’s C files are then processed by the framework to produce prompt
perturbations in Step I and translate them into Rust in Step II to produce the translation
statistics required for the robustness evaluation in Step III.

Step I - Perturbation

In the first step, the framework generates multiple perturbation datasets based on a C
to Rust code translation benchmark dataset. As previous research proved, perturbations
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Figure 4.1: Overview of the proposed three-step framework, consisting of a perturbation,
translation, and evaluation process.

are a crucial part when evaluating the robustness of an LLM in the context of code
generation. Utilizing variations of the original prompt enables the comparison of the
model’s performance regarding different perturbations against the original prompt.

Step II - Translation

Step II utilizes the perturbed datasets of Step I and calls an LLM with all the code
translation prompts resulting from Step I. Step II aims to generate the Rust translations and
record translation statistics, which will be used in Step III. In detail, these statistics capture
whether a translation is successful, determined by two criteria: (i) compilation success
(i.e., the Rust code compiles without errors) and (ii) fuzzing success (i.e., a differential fuzzer
detects no behavioral differences between the original C code and its Rust translation,
thereby testing their functional equivalence).

Step III - Evaluation

Lastly, Step III analyzes the translation results of Step II and evaluates them according to
predefined metrics. Specifically, the metrics of the framework are based on previously men-
tioned pass@k approaches, namely RP𝑠@k introduced by Wang et al. in ReCode [Wan+23].
However, rather than using unit tests to measure correctness, the framework relies on the
translation statistics from Step II (compilation success and fuzzing success), similar to
other LLM-based code translation works [Eni+24].

In addition to the robustness metrics, the proposed evaluation step incorporates the
concept of perturbation similarity into the robustness assessment. Consequently, Step III
also receives the perturbed datasets of Step I as input and quantifies their similarity to
the original prompt. To be more precise, Step III uses an embedding model to compute
the cosine similarity between the original and the perturbed files. The intuition is that
perturbations that are very similar to the original yield more robust translation results
compared to less similar perturbations. Capturing this effect is a nuance of a comprehensive
robustness evaluation and also accounts for RQ4. An LLM that shows non-robust behavior
to highly similar input variations may be deemed less robust, as a model that primarily
fails for perturbations that are significantly different from the original.

Furthermore, Figure 4.1 illustrates that, in addition to the benchmark dataset, the
framework also requires a configuration for each step. The specific details of each step are
explained in the upcoming sections.
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4.2 Step I - Perturbation
In the first step, the framework systematically produces perturbed versions of the original
C code files combined with a predefined code translation instruction. As Chapter 3
highlights, this is crucial when wanting to assess how an LLM handles variations in code
or instructions, reflecting realistic programming styles or minor user mistakes like spelling.

Step I of the framework runs based on a configuration file. This configuration specifies
which perturbation strategies to use and with what parameter settings. This results in the
framework generating a perturbed dataset for each strategy. Specifically, the framework
includes 23 distinct strategies that, through different parameter configurations, can lead
to a wide range of perturbed datasets.

The following subsections address the main challenges of perturbation-based evaluation,
introduce a categorization for improved distinguishability, and detail each of the 23
implemented strategies with examples. Finally, the overall perturbation process and
implementation details are outlined.

4.2.1 Challenges and Perturbation Requirements
In order to comprehensively assess and compare an LLM’s robustness in code translation,
multiple perturbation strategies are required. Recalling the “robustness to instruction
vs robustness to code” research gap (Section 1.2.1), a robustness evaluation relevant
to code translation has to primarily check for input variations in code. Specifically, a
robustness evaluation should analyze how much the model is affected by real-world noise
and inconsistencies in its prompted code. To evaluate this, the perturbations have to
reflect such behavior accurately. However, identifying and implementing such perturbations
presents several challenges.

Semantic Equivalence

A fundamental requirement for robustness evaluation is ensuring semantic equivalence
across different perturbation strategies. As seen in prior work, most robustness assessments
rely on semantically equivalent perturbations, ensuring that the functional correctness of
the code remains unchanged.

The primary reason for this strict requirement is that unit tests are commonly used
to verify correctness when assessing the robustness of code generation models [Wan+23;
Mas+23; Yan+23a]. If a perturbation were to alter the semantics of the prompt, it would
naturally lead to semantically different outputs, making unit test comparisons invalid.

Despite this framework not relying on unit test correctness, the requirement remains
important. Evaluating an LLM with semantically different perturbations would not measure
robustness, but instead test the model’s capability to translate a different intent. This
does not align with the robustness definition of the thesis.

Real-World Relevance

Another requirement for the perturbation strategies in this thesis is real-world relevance.
To confidently evaluate a code translation’s robustness for practical usage, the perturba-
tions have to account for the variances that are relevant in well-intentioned real-world
scenarios. The thesis’s robustness evaluation assumes that a well-intended code translation
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environment does not need to prove robustness against adversarial attacks, as would be
common in adversarial robustness.

Instead, a robust model should deviate in performance when translating a variety of C
projects into Rust, even when faced with projects of teams with diverse coding styles and
conventions. This may also include teams with varying programming experience, which
results in different levels of code clarity, as well as real-world noise by inconsistencies in
formatting, naming conventions, and structure.

To reflect these challenges, the chosen perturbation strategies must capture realistic
variations in code. This includes not only superficial transformations (e.g., changes to
identifiers in level II of Figure 3.1) but also deeper structural modifications (e.g., changes
in control flow in level VI of Figure 3.1) while preserving semantic equivalence.

Syntactical Correctness

When automatically modifying existing code, perturbation strategies can easily introduce
syntax errors. However, the framework’s design strictly requires maintaining syntactical
correctness for the perturbed C code.

Evaluating the functional equivalence between the C and Rust requires that both code
versions are compilable. If the perturbed C code cannot be executed, it becomes impossible
to compare its behavior against the translated Rust version. This makes syntactical
correctness a crucial requirement when wanting to evaluate the robustness of functional
equivalence between translation and original code.

Trade-offs in Perturbation Selection

While various perturbation strategies exist in related works, implementing all of them
is impractical. Since none were originally designed for C, adapting them requires a full
re-implementation, which exceeds the scope of this work.

Additionally, applying SOTA robustness metrics such as RP𝑠@k has its drawbacks.
Each perturbation requires executing translations 𝐹 × 𝑠 × 𝑛1 times. This results in high
computational and financial costs, depending on whether paid APIs or local models are
used.

Therefore, selecting meaningful perturbations is essential to balance feasibility and cov-
erage. The chosen perturbation strategies have to meet the requirements while representing
a broad range of transformation magnitudes to accurately reflect possible code variations
of the real world.

4.2.2 Categorizing Perturbation Strategies
To systematically assess robustness, perturbation strategies are categorized in three different
properties: (i) perturbation determinism, (ii) perturbation target, and (iii) perturbation
level.

Perturbation Determinism

Some perturbation strategies inherit randomized operations, whereas others act in a static
way. Consequently, this work distinguishes between stochastic strategies and deterministic

1Where 𝐹 is the number of files in the original benchmark dataset, and 𝑠, as well as 𝑛, follow the definition
in RP@k.
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strategies. This categorization is important when measuring the robustness, because evalu-
ating stochastic strategies introduces a problem. Imagine having a perturbation strategy
Butterfinger that randomly produces typos to an original instruction as illustrated in
the following prompts.

Original Instruction

Translate the following C code to Rust.

Butterfinger Instruction Version 1

Translate fhe foolowing C code to Rust.

Butterfinger Instruction Version 2

Translate the following C code to Tyst.

The general task of Version 1 remains recognizable for a human and probably also for
an LLM. However, while Version 2 also solely introduces two character replacements, the
objective of the task becomes hard to understand. Since Tyst is no real programming
language, the model could be unsure whether the user originally meant Typescript or Rust,
which could produce results not aligned to the actual goal of the task. Having the chance
of producing easier or more difficult versions of a perturbation poses the question of which
one of the versions to choose for the evaluation.

The naive way would be to choose the hardest prompt, but this is not directly measurable
beforehand. Hence, ReCode proposed metrics relying on the worst-case approach, such as
RP𝑠@k, where a task is only considered correct if and only if it produces a correct result,
for 𝑠 different versions of the perturbation strategy.

This presents a good approach to incorporate the variances of stochastic strategies into
the evaluation. However, applying this approach to deterministic strategies is not necessary,
since there are no differing variants. This would unnecessarily increase the amount of
LLM calls, resulting in higher expenditure in cost and computation, an aspect that will be
discussed in Section 4.3.4. Consequently, a distinction between these strategies is beneficial
when evaluating the robustness. In consequence, the approach of using 𝑠 versions for a
stochastic perturbation affects the whole process of Step I, which is particularly described
in Section 4.2.4.

Perturbation Target

Besides being deterministic or stochastic, perturbations are also categorized based on the
target they aim to create change:

• Instruction: Perturbations applied to the natural language instruction that describes
the task to the model (see Section 2.4.1).

• Comments: Perturbations applied to comments inside the code sample.

• Code: Perturbations applied to transform the code sample.

As stated in Section 3.3, evaluating the robustness to the natural language instruction part
is not that meaningful in the context of LLM-based code translation. A deployed code
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translation system would only ask for the source and target languages in addition to the
code that is to be translated. Hence, when creating such a system, one task would be to
identify the optimal task description, which stays static afterwards. Neither the creation
of such a system nor the optimization process is part of this robustness evaluation.

Consequently, this work focuses more on identifying perturbations on code and comments.
However, excluding instruction perturbations completely would mean leaving out the
opportunity to compare whether code and comment perturbations will have a similar
impact as instruction perturbations. Specifically, an instruction to perform LLM-based
code translation could be defined as: “Translate this C -Code into Rust”. In contrast to the
whole prompt, which contains this instruction and the code part, this is only a fraction of
the prompt. However, since each word of this sentence has quite a lot of impact on the
semantics of the instruction, perturbing this slightly could result in drastically different
outputs. This hypothesis has yet to be shown empirically for code translation.

Superficial vs Profound - Levels of Perturbations

Apart from perturbation target and perturbation determinism, perturbations targeting
comments or code are further categorized into the six levels by Faidhi and Robinson [FR87],
as described in Section 3.3.3. Using the six levels is not only motivated by the fact that it
helps to distinguish strategies impact-wise2. Instead, it also helps to identify strategies in
general. Categorizing into the six levels shows immediately whether there are strategies
that change not only simple properties like identifiers, but also perform deeper structural
transformations. When evaluating the robustness of code perturbations, this is an important
aspect.

According to the definition of robustness, a robust code translation model should be
capable of producing similar results, no matter if the code is written in a different structure
and different decision logic. Since different programmers tend to create different solutions
to the same problem, which has been empirically shown by Nanz and Furia [NF15]3, it
is important part of the evaluation to test results with structurally different code inputs.
Using such level-based categorization adheres to the trade-offs in perturbation selection, as
it shows which kind of perturbations are necessary to represent various relevant scenarios,
without involving too many perturbations that perform similar things.

4.2.3 Implemented Perturbation Strategies
This subsection lists the implemented perturbations and briefly describes the motivation
behind choosing these strategies. Each perturbation strategy is described in full detail
in Appendix A.1, where the explanation highlights that each strategy adheres to the
requirements of a perturbation strategy. Table 4.1 gives an overview of the strategies. Since
some strategies can be found in previous work, the table contains a related work column
that references papers that used a perturbation strategy similar to the one. Table 4.1
demonstrates, that some perturbation strategies are performed on either instructions,
comments or code. Although the framework technically allows a single perturbation to

2In this case, the impact is referred to as a prompt being either superficial or profound, with more
changes on structure or control flow.

3Altough this study only evaluated different solutions to the same task in different programming languages,
this leads to the idea, that solutions can be different, based on which language a programmer mostly
works with.
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Strategy Determinism Target Level Related Work
Backtranslation Deterministic Instruction - Mastropaolo et al.[Mas+23]

Huang et al.[Hua+21]
Butterfinger Stochastic Instruction -
ChangeCharCase Stochastic Instruction -
Concretizer Stochastic Instruction - COCO[Yan+23a]
Translation Deterministic Instruction -
Backtranslation Deterministic Comments I ReCode[Wan+23]
Butterfinger Stochastic Comments I ReCode[Wan+23]
ChangeCharCase Stochastic Comments I ReCode[Wan+23]
LLMCommentInsertion Stochastic Comments I
RemoveComments Deterministic Comments I Zhang et al.[Zha+23b]
Translation Deterministic Comments I
CodeFormat Deterministic Code I
ABC Deterministic Code II Yu et al.[YWW22]
Backtranslation Deterministic Code II
Butterfinger Stochastic Code II ReCode[Wan+23]
CamelCase Deterministic Code II ReCode[Wan+23]
ChangeCharCase Stochastic Code II ReCode[Wan+23]
LLMVariableImprove Stochastic Code II
IdenObfuscator Deterministic Code II
PascalCase Deterministic Code II
SnakeCase Deterministic Code II
Translation Deterministic Code II
ConstantInsertion Stochastic Code III SPPlagiarise[CLS19]
DeadCodeInsertion Stochastic Code III ReCode[Wan+23]

Zhang et al.[Zha+23b]
IncludeCommentAdder Stochastic Code III
LLMCodeExtraction Stochastic Code IV SPPlagiarise[CLS19]
FunctionSignatureChange Stochastic Code IV
ForWhileSwitch Deterministic Code V ReCode[Wan+23],

SPPlagiarse[CLS19],
Li et al.[Li+24b]
Zhang et al.[Zha+23b]
Yu et al.[YWW22]

ConditionSwap Deterministic Code V ReCode[Wan+23]
Li et al.[Li+24b]
Zhang et al.[Zha+23b]
Yu et al.[YWW22]

ConditionDup Stochastic Code VI Li et al.[Li+24b]
DeMorgan Deterministic Code VI

Table 4.1: Overview of implemented perturbation strategies, categorized regarding de-
terminism, target, and level. Perturbation strategies that were motivated by
previous works reference their originating related work.
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target multiple places in parallel, the decision was to always select only one target. This
improves the interpretability of the evaluation results.

The Appendix additionally contains a Table that demonstrates the perturbations on an
exemplary prompt.

As stated previously, the perturbation strategies have to be real-world-relevant and re-
flect input variations that could appear in practice. The perturbations ChangeCharCase
and Butterfinger represent common errors that appear and present regular noise. With
CodeFormat, CamelCase, PascalCase, and SnakeCase, the influence of different cod-
ing conventions and style guides on code translation performance is examined. Furthermore,
the effect of different levels of documentation is assessed by using RemoveComments
and LLMCommentInsertion. By applying Concretizer, Backtranslation, LLM-
VariableImprove, LLMCodeExtraction, or ForWhileSwitch, the robustness to
individuality in code and prompts written by different persons is evaluated. Condition-
Swap and DeMorgan go even further by assessing the same in decision logic. Furthermore,
with Translation, the framework examines robustness for multilingual scenarios. Lastly,
IncludeCommentAdder, ABC, IdenObfuscator, ConstantInsertion, DeadCodeIn-
sertion, FunctionSignatureChange, or ConditionDup represent perturbations that
simulate a poorly written or poorly documented codebase, which is part of the real world.

With these perturbation strategies, the framework covers a broad spectrum of input
variances that follow different objectives and also represent different targets and levels of
such variances.

Table 4.1 highlights that most of the perturbation strategies are applied on the code
part of the prompt, i.e., comments or code, which addresses the identified research gap,
missing a comprehensive evaluation of code perturbations with different complexities.
Considering this, the table also shows that most of the perturbation strategies act on
superficial levels I and II. However, compared to previous robustness evaluation works4, this
framework incorporates a higher number of profound strategies. Only ReCode evaluated
the robustness on perturbations that were deeper than level II, i.e, three strategies, whereas
this framework incorporates nine perturbations that are deeper than level II. Despite
having more profound perturbation strategies, the levels are still not evenly distributed.

This is because, when wanting to automatically generate semantically equivalent pertur-
bations, the difficulty and implementation complexity increases with each level. Having
at least two perturbations for each level seemed to be a good trade-off between covering
a broad range of variations and not creating overly complex strategies, which aligns to
Section 4.2.1.

4.2.4 The Perturbation Process
Implementing and choosing the right perturbations is one part of Step I. Another one is
utilizing the implemented perturbation strategies to produce perturbed datasets that can
be used for Step II and Step III.

For this, Step I expects a dataset and a configuration as input. The dataset contains
multiple C files, with which the code translation robustness should be assessed. Such a
dataset must be carefully designed to comprehensively assess robustness in code translation
and account for the research gap “programming languages and benchmark complexity”.

4Referring to the works that were described in Chapter 3 (ReCode [Wan+23], Mastropaolo et al. [Mas+23],
COCO [Yan+23a], and Improta et al. [Imp+25]).
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Figure 4.2: Perturbation process of the framework, using 𝑠 seeds and 𝑖 perturbation
strategies, creating various perturbation datasets.

The files should cover a diverse range of complexities and real-world relevant C source code
to ensure that the robustness of the system is accurately measured for practical usage.

The additionally entered configuration file specifies the perturbation strategies and their
parameter settings. Furthermore, it contains the original natural language instruction and
a seed value, to make results reproducible and also allow the creation of differing stochastic
perturbation strategies.

Specifically, comprehensively evaluating stochastic strategies requires assessing a model’s
performance on multiple variances of stochastically perturbed inputs, as presented in
Section 4.2.2. This is achievable by using multiple seed values for the perturbation process
when doing the robustness assessment. Subsequently, the number of different seeds is
denoted as 𝑠, similar to ReCode’s notation [Wan+23].

Figure 4.2 illustrates the process of creating the perturbed datasets. The visualization
shows that for each seed, there is one additional dataset: Identity. This describes the
original prompt, without perturbation. While it is technically not necessary to create
such a Identity dataset or even multiple identical Identity datasets, it is used to reduce
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implementation effort. The dataset evaluated in this thesis is not huge, hence doing it
like this is an okay trade-off and follows the YAGNI [Fow15] principle. When wanting to
evaluate very large datasets, one should consider changing this and working with the files
directly out of the original dataset.

For the evaluation of deterministic perturbations, 𝑠 should be set to 1. Otherwise, one
would produce multiple identical datasets for the same perturbation strategy. Evaluating
these identical datasets with a worst-case metric, such as RP𝑠@k, would not follow the
concept that these 𝑠 datasets describe different datasets.

Hence, when designing the experiments, they either evaluate deterministic perturbations
or stochastic perturbations, because one of them involves multiple 𝑠 datasets and the other
does not.

For 𝑖 perturbation strategies5, and 𝑠 seeds, the implemented framework will consequently
create 𝑠 × 𝑖 datasets, which ultimately results in 𝑠 × 𝑖 × 𝐹 prompts. Consequently, there is
a perturbed dataset for each pair of ⟨strategy, seed⟩6.

Specifically, a perturbed dataset includes not only the perturbed C file, but also the
belonging instruction. Since some perturbation strategies like Concretizer require an
instruction tailored to a specific file, for each C file, there is an accompanying instruction
file. This instruction file has the same basename as its C file but ends in .inst, which
ensures a one-to-one pairing.

Appendix A.1.1 goes into more details of implementing perturbation strategies and
illustrates that such automatic perturbations are not trivially implementable. Additionally,
it details that the perturbation process incorporates an automatic syntax check, which
directly notifies the user in case a perturbation does not align with the syntax-correctness
requirement.

4.3 Step II - Translation
In Step II, all perturbed C code prompts generated in Step I are passed to an LLM-based
code translation system that translates them into Rust. Specifically, this system is a SOTA
LLM-based C-to-Rust translation system that has been designed by Bosch [QHW25]. This
system not only produces the actual Rust translations for every perturbed prompt, but
also the translation statistics (e.g., compilation or fuzzing success). These outputs are
then used in Step III to measure the model’s robustness and consequently prepare the
framework to be used in experiments to answer the RQs.

4.3.1 Overview and Goals
Recall that Step I and its perturbation strategies generate many perturbed versions of
a single original file to enable a comparison of the translation results on the original
and perturbed prompts. Step II aims to process the results of Step I and produce the
LLM-based Rust translations to prepare a comprehensive evaluation in Step III.

The high-level overview of Step II can be described as follows.
At first, iterate over each perturbed file and its instructions. Second, call the LLM

to translate the file from C to Rust. Lastly, collect the LLM’s output and store both

5Where Identity is included in 𝑖.
6Where strategy refers to perturbation strategy.
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the produced Rust code and any relevant statistics. Specifically, those statistics involve
whether the Rust code compiles, and if the translation passes the differential fuzzing.

Since LLMs are nondeterministic and the same prompt may lead to different results,
each prompt is translated 𝑛 times. This allows the framework to apply metrics like pass@k.

Additionally, Step II applies a feedback loop strategy. Whenever the generated Rust code
fails to compile or does not pass the differential fuzzing check, the system re-prompts the
model with the encountered error. However, this process is limited to a predefined number
of iterations to prevent infinite loops.

This mimics how a programmer might inform the model about an error and request a
correction, consequently improving the chance of better results.

The following subsections detail how prompts are structured as input, how outputs are
saved, and how the translation process (including verification and the feedback loop) is
implemented.

4.3.2 Input Specification
The input of Step II consists of the various perturbation datasets produced in Step I.
Specifically, such a dataset contains the perturbed and syntactically correct C files and
the accompanying instruction files.

Step I not only produces one perturbation dataset for each strategy, instead it may also
produce 𝑠 different versions of each strategy when working with stochastic perturbations.

The framework organizes them into distinct datasets, one for each ⟨strategy, seed⟩ pair.
Each of these datasets contains the C code and instruction files to be used for the code
translation prompt.

As Figure 4.1 highlights, Step II not only receives the results of Step I, but also involves
a configuration. This configuration specifies the LLM to use for the translation, which is an
important feature to examine RQ5. Furthermore it includes the parameters: max_retries,
fuzzing_time, and 𝑛, that are detailed in Section 4.3.4

4.3.3 Output Specification
For each dataset, Step II must produce both translated Rust files and translation statistics.

Translated Rust Files For every pair of ⟨strategy, seed⟩ Step II saves each of the Rust
translations to disk.

Translation Statistics For every ⟨strategy, seed , run⟩ pair, where run denotes a single
attempt in 𝑛 for pass@k, Step II saves translation statistics in a .csv file [Sha05], that
contains statistics for each ⟨prompt, run, iteration⟩ pair that is processed. The iteration
refers to the number of retries in the feedback loop, that is detailed in the next section.

These statistics include whether the LLM produced Rust code at all, whether the Rust
code compiled successfully (compilation success), and whether the differential fuzzing
did not result in any semantic mismatches (fuzzing success). Additionally, the number of
tokens and possible exceptions are logged.

The statistics are the foundation for the final robustness metrics in Step III, which build
upon pass@k and RP𝑠@k.
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Algorithm 1 The code translation process of Step II that utilizes the perturbed datasets
and generates Rust files, as well as translation statistics.

1: max_retries ← 5
2: for all perturbation strategy 𝑖 in perturbation datasets do
3: for all perturbation version 𝑠 in strategy 𝑖 do
4: for run ← 1 to 𝑛 do
5: initialize translation statistics for (𝑖, 𝑠, run)
6: for all prompt𝐹 in perturbation dataset (𝑖, 𝑠) do
7: translation← LLM(prompt𝐹)
8: iteration ← 0
9: SaveRust(translation)

10: RecordStats(𝐹, run, iteration, translation)
11: while translation invalid and iteration < max_retries do
12: prompt′

𝐹
← prompt𝐹 + translation.error_msg()

13: translation← LLM(prompt′
𝐹
)

14: SaveRust(translation)
15: iteration ← iteration + 1
16: RecordStats(𝐹, run, iteration, translation)
17: end while
18: end for
19: end for
20: end for
21: end for

4.3.4 The Translation Process
Algorithm 1 outlines the translation process in Step II.

At first, the process iterates over all perturbations. Meaning for each perturbation
strategy 𝑖 and each of its 𝑠 versions, the framework collects the code translation prompts
from Step I.

Each of these 𝐹 prompts is then translated 𝑛 times, to gather multiple translation
results, capturing the nondeterminism of the LLM. The value of 𝑛 is specified via the
translation configuration (see Figure 4.3).

Lastly, each LLM response is verified for compilation success and fuzzing success. If
either check fails, the process goes into the feedback loop. This means it uses the error
message of the verification to redefine the prompt and guide the model towards a valid
translation. This feedback loop process gets repeated until the translation is valid, or the
number of iterations exceeds the specified maximum amount.

In detail, the maximum number of LLM calls in Step II can be calculated with:

max_llm_calls := 𝑖 × 𝑠 × 𝑛 × 𝐹 ×max_retries. (4.1)

Consequentially Step II produces 𝑖 × 𝑠 × 𝑛 translation statistic .csv [Sha05] files.
Figure 4.3 illustrates the key steps involved when processing a single code translation

prompt, which happens for each ⟨strategy, seed , run⟩ pair. The following sections describe
the key steps of verification and the feedback loop in more detail.
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Figure 4.3: Process of a single translation with the code translation system of the
framework.

Verification and Feedback Loops

As detailed in Figure 4.3, after receiving an LLM response, the pipeline performs a
verification, which involves the criteria compilation success and fuzzing success. In case the
verification fails, the original prompt is redefined and extended by an error message. The
experiments in this thesis will be conducted with a max_retries of five. Earlier testing
showed that initial errors are mostly resolved in the first few iterations. If an error persists
beyond this point, the model tends to reproduce it consistently, indicating an inherent
limitation in its ability to correct the issue. While this theoretically could miss on a few
later improvements, five seemed to be a good trade-off between maximizing correction
attempts and avoiding unnecessary costs, as each additional iteration directly impacts the
number of LLM calls in Equation (4.1). Chapter 7 will examine whether max_retries of
five empirically presents a good trade-off for robustness evaluation experiments.

As described before, the statistics of each iteration of the loop will also be added to the
output csv. This enables an evaluation of the system with and without the feedback loop.
Consequently, the framework can evaluate whether using such a strategy has an impact
on the robustness of LLM-based code translation, which will be answered in Chapter 7
and accounts for RQ3.

Specifically, the two correctness criteria are verified as follows.

Compilation Success The generated Rust code must compile. If it fails, the compiler
error message is appended to the prompt, asking the model to fix it. Specifically, the
compilation is verified by using rustc [Thec], which produces a list of errors in case the
Rust code is not compilable.

Besides verifying the compilation with rustc, the code is examined regarding linting
errors with clippy [Lan]. Similar to rustc, clippy also returns a list of error messages, in
case the generated code is not free of linting errors.

If errors are found, the prompt is extended as follows:
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Prompt with Compilation Error

You made the following mistakes:� �
<rustc|clippy error message 0>
<rustc|clippy error message 1>
<rustc|clippy error message ...>� �

Fuzzing Success The pipeline uses differential fuzzing to compare the behavior of
the prompted C code against the generated Rust code, thereby testing their functional
equivalence. The implemented differential fuzzing approach is similar to the one used in
FLUORINE [Eni+24], visualized in Figure 2.3. However, instead of generating fuzzing
inputs for Rust, the used system generates fuzzing inputs for C.

If the fuzzer finds a counterexample that demonstrates a behavioral mismatch and that
specific example is appended to the prompt of the next iteration.

Specifically, the differential fuzzer tries finding counterexamples for all identically named
functions in the C and Rust code. This process is done for a specified number of seconds
for each function in a file. The amount is configured by the fuzzing_time parameter in
the configuration of Step II. In the experiments of this thesis, the fuzzing_time is strictly
set to 15 seconds. As the code translation system is a predefined system, it has already
undergone some testing. Specifically, different fuzzing_time values were tested, but it
turned out that most counterexamples were identified rather quickly. According to prior
testing, fuzzing times beyond 15 seconds mostly led to additional inputs being fuzzed
without identifying further counterexamples. Since fuzzing is applied to all results of each
LLM response, i.e., Equation (4.1), choosing an unnecessarily long fuzzing_time would
drastically increase the runtime of the entire pipeline. Therefore, 15 seconds presented an
effective fuzzing_time setting.

In case the fuzzer identifies one or more counterexamples, the feedback prompt is
structured accordingly:

Prompt with Fuzzing Counterexamples

You made the following mistakes:� �
In function <function name >:

Fails for input <parameter_name > = <counterexample_value >� �
Note that all identically named functions are being fuzzed, and the fuzzer can identify

counterexamples for more than one function.
Furthermore, the implementation of a fuzzer that heuristically compares various inputs

for certain parameters is not trivial, and it may lead to problems in certain edge cases and
throw exceptions. In such cases, the LLM response is taken as is, and there is no further
feedback loop iteration. When evaluating the experiments, it will be discussed whether
fuzzing failures resulted because of counterexamples, or fuzzing exceptions.
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4.4 Step III - Evaluation
The third step focuses on evaluating the produced translation statistics of Step II, therefore
quantifying the system’s robustness. Specifically, this step provides the necessary tools
and metrics to comprehensively evaluate the robustness of an LLM-based code translation
system.

4.4.1 Overview and Components
As Figure 4.1 shows, Step III gets both the perturbed prompts from Step I and the
translation statistics and generated Rust files as input. In contrast to the previous steps,
Step III does not provide a fixed processing pipeline, but rather a collection of evaluation
components that can be flexibly combined to analyze different nuances of robustness that
are existing research gaps (see Section 1.2.5).

These components are: (i) robustness metrics based on pass@k and its extensions, (ii)
aggregation methods for translation statistics, and (iii) similarity analysis between original
and perturbed prompts.

With these components, the framework provides all the necessary tools to assess the
robustness of the used LLM in Step II. While there is no specific component that directly
distinguishes between nondeterministic model noise and genuine robustness deficits, the
framework can be used appropriately to enable such differentiation. Section 4.5 details
how the framework can and should be used for a comprehensive robustness evaluation.

4.4.2 Robustness Metrics
The core component of Step III is the implementation of metrics for quantifying the
robustness.

Pass@K and Its Extensions

The underlying metric used in this step is pass@k, which has been introduced in [Che+21].
This metric indicates the probability that at least one of 𝑘 samples provides a correct
result in 𝑛 runs, with 𝑛 ≥ 𝑘 . For the evaluation of robustness, ReCode extended the metric
to new variants such as RP𝑠@k.

The thesis utilizes the concepts of RP𝑠@k and defines a new extension: Robust Change𝑠@k
(RC𝑠@k). The next part describes the meaning of the metrics used in the context of the
thesis.

Robust Pass@k Measures the probability that a code translation system provides a
successful translation for all 𝑠 versions of a stochastic perturbation. This is specifically
relevant for stochastic perturbations, which has been reasoned before. Since deterministic
perturbations do not provide variants, these perturbations are evaluated with 𝑠 = 1. By
definition, 𝑅𝑃𝑠@𝑘 with 𝑠 = 1 is equivalent to 𝑝𝑎𝑠𝑠@𝑘, and for uniformity and better
understandability, the thesis always uses the term 𝑅𝑃1@𝑘 instead of 𝑝𝑎𝑠𝑠@𝑘, also for the
deterministic perturbations.
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Robust Change@k Quantifies the relative change in translation performance between
the original Identity and a perturbation. The metric is defined by Equation (4.2).

𝑅𝐶𝑠@𝑘 =
|𝑅𝑃𝑠@𝑘Identity − 𝑅𝑃𝑠@𝑘Perturbation |

𝑅𝑃𝑠@𝑘Identity
(4.2)

This metric directly reflects the amount of performance deviations observed for a pertur-
bation. Since both performance increase and decrease demonstrate robustness deficiencies,
the decision was to use the absolute value. While it is neat to directly observe whether a
perturbation improved or decreased performance, it comes with drawbacks when wanting
to aggregate or intuitively visualize information.

Since the comprehensive evaluation uses both metrics, by comparing 𝑅𝑃𝑠@𝑘, it can be
directly observed whether a perturbation produces better or worse results.

Note that these metrics can be applied to both compilation success and fuzzing success.
However, fuzzing success is the more relevant success metric as it strictly defines that a
translation is functionally equivalent. For the real-world application of a code translation
system, this is the final result that is desired. Nonetheless, compilation success can be used
to improve the interpretation, why certain tasks or perturbations might fail.

The selection of these two metrics, 𝑅𝑃𝑠@𝑘 and the newly defined 𝑅𝐶𝑠@𝑘, was made
since they are closely aligned with the goals of this thesis. 𝑅𝑃𝑠@𝑘, based on the approach
of ReCode [Wan+23], serves as an established metric to quantify the absolute robust
performance considering stochastic variations (𝑠 > 1) and as an equivalent to pass@k for
deterministic perturbations with 𝑠 = 1. In order to directly measure the model’s sensitivity
to specific perturbations, 𝑅𝐶𝑠@𝑘 was introduced. The metric measures the relative change
in performance compared to the baseline 𝑅𝑃𝑠@𝑘Identity .

These two metrics are sufficient to comprehensively answer the RQs of this thesis,
without overloading the analysis with a large number of metrics. The combination allows
an assessment of both the absolute robust performance and the specific effects of individual
perturbations.

4.4.3 Aggregation Methods
With the different perturbation characteristics, the framework enables various options for
aggregating the metrics.

Recall that a perturbed dataset consists of 𝐹 files. The default metric 𝑅𝑃𝑠@𝑘 is computed
for each file 𝑥 in the dataset and then aggregated by taking the mean:

𝑅𝑃𝑠@𝑘 =
1
𝐹

𝐹∑︁
𝑥=1

𝑅𝑃𝑠@𝑘 (𝑥).

This is the default aggregation method, used when reporting the performance for an entire
perturbation or Identity.

Since the perturbations have different properties (such as determinism, target, or level),
the aggregation can be further specialized. For a given property, let 𝑃 denote the number
of perturbations that share the same characteristic. Then, the aggregated metric for that
property is defined as:

𝑅𝑃𝑠@𝑘property =
1
𝑃

𝑃∑︁
𝑝=1

𝑅𝑃𝑠@𝑘 (𝑝),
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� �
int sum(int num1 , int num2) {

return num1 + num2;
}� �

Listing 4.1: Identity sum function.]Simple Identity sum function.

� �
int sum(int number1 , int number2) {

return number1 + number2;
}� �

Listing 4.2: Simple perturbed sum function.

where 𝑅𝑃𝑠@𝑘 (𝑝) is the aggregated dataset performance for perturbation 𝑝 among the 𝑃

perturbations with that property.
These aggregations enable a systematic evaluation and can be leveraged to compare

robustness impacts caused by perturbations of different characteristics. For example, it
may show that deeper structural changes to code may cause more robustness issues than
the superficial levels I or II.

4.4.4 Semantic Similarity Analysis
Section 3.4.6 detailed that related work always incorporated a way of measuring similarity
between original and perturbed prompt versions. However, none of the works examined
whether stronger perturbations on code also lead to stronger robustness deviations. To
close this gap Step III includes a component to measure the semantic similarity between
the original and perturbed prompts.

Motivation

Section 4.2.1 shows that a key requirement in a perturbation-based robustness evaluation
is that each perturbation keeps its semantical meaning. If not, the framework would not
be testing the model’s robustness to similar inputs, but rather its ability to handle an
entirely different problem, which is not relevant in terms of robustness.

However, even when two files are semantically equivalent, there can still be major
differences in how the code is structured. Consider the following example of an unperturbed,
simple addition function in Listing 4.1 and a highly similar perturbed version in Listing 4.2,
as well as a complex perturbation in Listing 4.3. While all inherit the same functionality7,
Listing 4.3 is likely perceived as far more complicated. If a model cannot translate the
bitwise version with similar performance to the simple version, labeling this issue equally
non-robust as if the model would fail on the easier perturbation may be misleading.

In real-world usage, such details matter because users expect the code translation system
to be robust to small changes in syntax, layout, or style. Minor edits like renaming variables
should not lead to large differences in the translated output. However, if a perturbation
drastically rewrites a function, the model might show a drop in performance that does
not necessarily indicate a lack of robustness, but rather reflects the higher difficulty of
translating significantly more complex code. This leads to RQ4, which investigates how

7Specifically, the bitwise variant may work differently on non-32-bit hardware.
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� �
int sum(int num1 , int num2) {

// 32 bit mask in hexadecimal
long mask = 0xffffffff;

// Iterate till there is no carry
while ((num2 & mask) != 0) {

// carry contains common set bits of num1 and num2 , left
shifted by 1

int carry = ((num1 & num2) & mask) << 1;

// Update num1 with (num1 + num2 without carry)
num1 = num1 ^ num2;

// Update num2 with carry
num2 = carry;

}
return num1 & mask;

}� �
Listing 4.3: Complex semantically equivalent sum perturbation [Gee24].

semantic similarity between original and perturbed inputs relates to observed robustness
deficits.

Similarity Measure

There are multiple ways to measure the similarity between text and code. This itself
is an entire research area that could be explored and compared. However, measuring
the similarity between prompts is only a nuance of a comprehensive robustness frame-
work and is therefore not explored in full detail. Specifically, the thesis chose among
similarity approaches that have been incorporated in robustness-related work, namely Lev-
enshtein distance [Lev66], CodeBLEU [Lu+21; Ren+20], and cosine similarity [SWY75b]
on embedding vectors [Mik+13a].

Among these techniques, cosine similarity on embedding vectors reflects the desired
similarity the best. As detailed in Section 2.2.1, embedding models try to capture the
semantics of words or sentences to encode them into a vector representation. Consequently,
vectors with a greater distance from each other suggest less similar inputs than vectors
closer to each other. While Levenshtein distance and CodeBLEU also measure how much
the text has been changed, they tend to focus on literal token differences or syntactic
differences. By contrast, embeddings and cosine similarity allow for directly reflecting a
model’s internal representation of code. The hypothesis is that this can highlight deeper
semantic or stylistic similarities that token-based methods may miss.

To better understand why cosine similarity is the best fit for quantifying similarity in
a perturbation-based robustness evaluation, the next examples detail the superiority of
cosine similarity compared to the other approaches.

Recall the Butterfinger instruction example of Section 4.2.2. By calculating the
similarity with Levenshtein, the measure would suggest that both perturbations are equally
similar to the Identity, with a literal difference of two (Table 4.2). However, this does not
accurately reflect the semantics of the instruction, as desired. The intent of the task is
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Perturbation Levenshtein ↓ BLEU ↑ Cosine Similarity ↑

Translate the following C code to Rust.

Translate fhe foolowing C code to Rust. 2 0.541 0.953
Translate the following C code to Tyst. 2 0.707 0.826

Table 4.2: Comparing Levenshtein [Lev66], BLEU [Pap+02; LO04] and Cosine Similarity
for a Butterfinger perturbation example on “Translate the following C code
to Rust.”. The used embedding model is OpenAI ’s ada-002 [Ope22c].

more difficult to understand when the target language Rust is not clearly defined.
Furthermore, BLEU 8 [Pap+02; LO04] captures that both perturbations are different,

as their value range is from zero to one, where one represents identical inputs. However, it
also states that the seemingly easier perturbation for the model is less similar.

In contrast, cosine similarity accurately reflects the similarity differences that would
be desired. Considering that the cosine similarity yields values from minus one to one,
it shows that the first example is close to the original instruction, and the one with the
modified target language is significantly less similar.

Perturbation Levenshtein ↓ CodeBLEU ↑ Cosine Similarity ↑

Listing 4.2 12 0.534 0.968
Listing 4.3 430 0.574 0.908

Table 4.3: Comparing Levenshtein [Lev66], CodeBLEU [Lu+21; Ren+20] and Cosine
Similarity for perturbations on code for the example of Listing 4.1. The used
embedding model is OpenAI ’s ada-002 [Ope22c].

The same example can be shown for code, by comparing the samples for the sum
function of Listing 4.1 in Table 4.3. While Levenshtein accurately reflects that Listing 4.3
is less similar, this is only because the number of characters is higher. A perturbation
that adds very elaborate comments could even yield higher Levenshtein scores, which
does not reflect the similarity that is desired for a robustness evaluation. In addition,
CodeBLEU measures that both perturbations are quite different from the Identity and
even indicates that the code in Listing 4.2 is less similar than that in Listing 4.3. The
cosine similarity value shows the expected comparison, where Listing 4.3 yields lower
similarity than Listing 4.2. Consequently, cosine similarity seems to reflect the similarity
that is desired for the robustness evaluation.

This ultimately leads to RQ4: “What is the correlation between semantic similarity
and perturbation-based robustness?”, which aims to clarify whether bigger differences in
these embedding-based similarity scores align with larger robustness deficits, or whether
the model’s performance is unpredictable even when the embeddings show high similarity.
If there is a clear correlation, the cosine similarity could be utilized a priori to exclude
perturbations that produce modifications that mislead a robustness evaluation.

8BLEU is the original metric that has later been extended to CodeBLEU to measure the similarity of
code.
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Similarity Baseline

While Table 4.2 and Table 4.3 showed that cosine similarity accurately reflects the desired
similarity differences, the actual values are hard to interpret by themselves. The cosine
similarity can, in theory, produce values ranging from minus one to one, yet the examples
only showed values ranging from 0.826 to 0.968.

To get a better understanding of the values an embedding model produces, Step III
involves a component that creates a baseline. This baseline gives information about the
relevant value range of cosine similarities for a given model. This value range distribution
can be derived by performing pairwise comparisons of all C files (𝐹) in the benchmark
dataset. Since the 𝐹 files are different from each other, the computed similarity scores
reflect how the embedding model interprets semantically different files that share only the
general property of being C code.

This value distribution can be utilized for statistical operations. Since the distribution
shows values for semantically different files, high cosine similarities that represent statistical
outliers to this distribution should therefore describe files that are more similar than the
other pairwise comparisons.

A common practice to detect such outliers is by utilizing the Z-Score [08].

Z-Score =
𝑥𝑖 − 𝜇

𝜎
(4.3)

The Z-Score is calculated by Equation (4.3), where 𝑥𝑖 represents an individual data-point,
and 𝜇 denotes the mean and 𝜎 the standard deviation of the distribution. In detail, the
Z-Score measures how many standard deviations a specific data point lies away from the
mean of the estimated baseline distribution.

Depending on the strictness of the task, there are two well-known Z-Score guidelines.
According to Tabachnick et al. [TFU07] Z-Scores that exceed 3.29 are considered outliers.
Other works [Che+24; RKK24] utilize Pukelsheim’s three sigma rule [Puk94], that means
that samples with a larger distance than three 𝜎 to the mean of a distribution are deemed
outliers. In a symmetric, normal distribution, a Z-Score of 3.29 corresponds to a probability
of less than 0.001 for values beyond this threshold belonging to the distribution, which is
why they are confidently considered outliers.

When comparing code similarity, it may be better to use the slightly less deviating three
sigma rule [Puk94]. Using the stricter 3.29 threshold might filter out perturbations that
produce strong changes, yet are similar enough for a model to expect robust results. By
choosing three sigma, it is rather unlikely that meaningful robustness perturbations will
be automatically classified as too different for the evaluation.

Consequently, when there is a clear correlation between cosine similarity and translation
success, perturbations that produce similarity values below three sigma can be considered
less valuable for the robustness assessment, and values above it indicate perturbations the
model should definitely be robust against.

Recall that the baseline is a result of pairwise comparisons of the C files. Therefore, the
value range reflects possible values for code inputs, not for basic natural language, as it
would be found for the one prompt’s instruction. Note that every file in the dataset has
the same Identity instruction, so it is not possible to create an instruction baseline with
the benchmark dataset. Subsequently, the baseline of the code files also has to be used for
assessing instruction perturbations. Since the robustness against perturbed instructions
is not relevant for the code translation system, there was no specifically created dataset
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for different instructions, to allow for a measured baseline of instruction cosine similarity
values.

4.5 Application of the Framework
After the three steps of the framework have been presented, this section describes how the
framework can be used methodically to perform a comprehensive robustness evaluation.
This methodology builds the basis for the experiments presented in the following chapters,
which are specifically tailored to the five RQs.

The herby explained methodology indirectly accounts that the components of this
framework can be used to comprehensively evaluate the robustness of an LLM in code
translation, which is the core RQ of this thesis. The subsequent experiments empirically
show whether Step I to III present the necessary components.

Furthermore, the upcoming section presents an approach distinguishing between inherent
LLM noise and true robustness deficits, which addresses RQ2: “How does one differentiate
between inherent LLM nondeterminism (noise) and true robustness deficits?”

4.5.1 Differentiate Between Model Noise and Robustness Deficits
As detailed earlier, LLMs are stochastic models. Additionally, when considering the common
temperature-based sampling during the output generation, it becomes clear that LLMs
can produce different outputs for identical inputs. Recall that the thesis’s definition of
robustness accounts for this characteristic. Specifically, a LLM-based system is deemed
robust if it is able to maintain an acceptable and expected level of performance under input
variations. Therefore, a crucial component of a robustness evaluation is to investigate what
the expected level of performance is and what performance signals non-robust behavior,
therefore allowing a distinction between non-deterministic noise and true robustness deficits
caused by perturbations.

Solving this question is important for a comprehensive robustness evaluation. If an
evaluation does not manage to isolate the model’s normal fluctuations, it risks attributing
random variations in performance to non-robust behavior. Preventing this is the core
motivation behind RQ2. To solve this challenge, the thesis introduces the following
approach.

Concept

The proposed methodology establishes a statistical baseline to quantify the LLM’s inherent
performance variability. This is achieved by collecting a larger number of translation results
𝑁𝑡𝑜𝑡𝑎𝑙 for the unperturbed Identity prompts compared to the standard number of runs
𝑛 used when evaluating specific perturbation instances (e.g., 𝑁𝑡𝑜𝑡𝑎𝑙 = 20 baseline runs
vs. 𝑛 = 5 runs per perturbation). This larger 𝑁𝑡𝑜𝑡𝑎𝑙 allows for a more reliable estimation of
the model’s typical output distribution under normal conditions.

Specifically, the 𝑁𝑡𝑜𝑡𝑎𝑙 baseline results are used to estimate the distribution of 𝑅𝑃𝑠@𝑘

values that one would expect if only 𝑛 runs had been performed, thereby mirroring the
exact evaluation conditions of the perturbation experiments. This estimated baseline
distribution serves as a reference point.

In detail, such a value distribution allows defining statistical thresholds that classify
whether the performance under a perturbation resulted in a performance that deviates
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significantly from the expected range. This is similar to the cosine similarity baseline
approach that examines the cosine similarity value range. If the performance under a
perturbation is clearly part of the measured unperturbed performance value range, it
cannot confidently be distinguished from nondeterministic model noise, since the model
showed the same deviating performance for the Identity.

Similar to the cosine similarity baseline, the methodology utilizes the Z-Score (Equa-
tion (4.3)) to specify significant outliers. However, while for cosine similarity the three
sigma rule is used to specify outliers, classifying non-robust behavior is more strict. In the
context of robustness evaluation, it may be beneficial to prioritize precision over recall
[DG06]. This means minimizing the risk of falsely classifying noise as a robustness deficit
(false positives), even at the cost of potentially missing some minor deficits (false negatives).
Consequently, instead of using Z-Score threshold of 3, the robustness classification uses
the stronger deviating Z-Score of 3.29, which originates from Tabachnick et al. [TFU07].
As detailed earlier, this threshold corresponds to 𝑝 < 0.001 in a normal distribution, where
𝑝 is the probability of a datapoint belonging to the distribution. Therefore, larger absolute
Z-Scores9 than this threshold are highly unlikely to be caused by random fluctuations
alone and are more likely to signal a genuine robustness issue.

While the Z-Score approach yields a statistical reference point, it should be applied
with caution. The previously presented threshold probabilities are bound to the model,
producing a normally distributed performance value range. Since the explored literature
suggests that this is a novel method for distinguishing between an LLM’s noise and true
robustness deficits, the experiments have to account for it and may adapt the approach
if necessary. Since there is no ground truth or perfectly robust model one can use for
comparison, this method cannot be completely validated. The specific implementation
details for estimating the baseline distribution are described next.

Implementation of Baseline Distribution Estimation

This section details the practical methods used to calculate the estimated baseline distri-
bution of 𝑅𝑃𝑠@𝑘 based on 𝑛 runs, derived from the larger set of 𝑁𝑡𝑜𝑡𝑎𝑙 available Identity
runs.

Recall that deterministic perturbations are being evaluated with 𝑅𝑃1@𝑘 and stochastic
perturbations with 𝑅𝑃𝑠>1@𝑘. Since larger 𝑠 potentially also poses a challenge for the model
under Identity by penalizing fluctuations, it is necessary to calculate a baseline for 𝑠 = 1
and a baseline for the 𝑠 chosen for the stochastic perturbations.

Baseline for s=1 To estimate the baseline distribution of 𝑅𝑃1@𝑘, all possible unique
subsets of size 𝑛 are drawn from the 𝑁𝑡𝑜𝑡𝑎𝑙 available baseline runs. For each subset, the
𝑅𝑃1@𝑘 is calculated. The total number of such subsets is given by the binomial coefficient(𝑁𝑡𝑜𝑡𝑎𝑙

𝑛

)
. For instance, with 𝑁𝑡𝑜𝑡𝑎𝑙 = 20 baseline runs and an robustness evaluation with

𝑛 = 5, this results in
(20

5
)
= 15, 504 distinct 𝑅𝑃1@𝑘 values. The frequency of specific values

forms the baseline distribution that is desired. While for this setting the
(20

5
)

values are
computationally feasible, the number of computations explodes when working with larger
𝑠.

Baseline for s > 1 Calculating the exact distribution for 𝑠 > 1 by enumerating all
combinations of 𝑠-sized subsets

(𝑁𝑡𝑜𝑡𝑎𝑙

𝑠

)
that form 𝑛-sized subsets

((𝑁𝑡𝑜𝑡𝑎𝑙
𝑠 )
𝑛

)
, is computa-

9Absolute Z-Score refers to positive and negative values.



4. Methodology - The Framework 61

tionally infeasible. Therefore, bootstrap sampling [ET94] is employed to approximate the
distribution.

To estimate the distribution of 𝑅𝑃𝑠@𝑘 based on 𝑛 runs per seed, a large number of
random samples denoted as 𝑏 (e.g., 𝑏 = 10, 000) are generated as follows. First, generate a
set of size 𝑏 with randomly sampled subsets of size 𝑠. These subsets are drawn from the
𝑁𝑡𝑜𝑡𝑎𝑙 translation results to form the groups considered for the worst-case measurement.
Specifically, this means that a task has to be successful for each of these 𝑠 groups to be
considered correct.

Having this group of size 𝑠 allows to repeatedly sample groups of size 𝑛 (𝑏 times). Each
of these 𝑛-sized groups represents a single potential 𝑛 × 𝑠 evaluation, which would be
conducted in the robustness evaluation for stochastic perturbations. This generates a large
set of 𝑅𝑃𝑠@𝑘 values that approximate the true distribution expected under the 𝑛-run
evaluation for stochastic perturbations.

Naming the Methodology Both the combinatorial method (for 𝑠 = 1) and bootstrap
sampling (for 𝑠 > 1) provide the necessary estimated baseline distributions (including
mean and standard deviation) required for the Z-Score analysis described in Section 4.5.1,
enabling a statistically guided differentiation between model noise and significant robustness
deficits. The later experiments will refer to this technique with Sampled Identity. Even
though it does not include “sampling” for 𝑠 = 1, Sampled Identity was chosen for consistency
and clarity.

4.5.2 Comprehensive Robustness Evaluation
After the baseline for an LLM has been established, the comprehensive robustness evalu-
ation can be conducted. The same dataset used for the creation of the baseline can be
perturbed with the implemented perturbation strategies in Step I and repeatedly translated
with Step II. With the translation results of Step II, the components of Step III can be
leveraged to perform the evaluation under specific points of view.

Aggregated Multi-Level Analysis

As detailed before, the robustness metrics can be aggregated based on different character-
istics: (i) perturbation determinism (deterministic vs. stochastic), (ii) perturbation target
(instruction, comments, code), or (iii) perturbation level (I-VI).

With such a multi-level analysis, the evaluation examines whether certain groups of
perturbations cause stronger robustness deficits than others. One intuition that was
described earlier was that instruction might have the potential to cause stronger deviations
than code perturbations. Furthermore, it could reveal whether deeper perturbations in the
code’s flow pose more challenge than superficial modifications to comments or identifiers.

In case the model does not signal any clear weaknesses against these aggregations, this
suggests that the model overall shows robust behavior. However, since these aggregations
might hide certain robustness deficiencies, a perturbation-specific analysis should be
performed as well.

Perturbation-Specific Analysis

Each perturbation strategy can be analyzed individually and compared with the baseline.
The Z-Score suggests whether certain strategies reflect non-robust behavior or nondeter-
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ministic noise.
Perturbations that cause significant non-robust behavior could also be analyzed at the

file level. By analyzing the results on the file level, it might reveal an investigation into
why the model shows deviations for a specific perturbation. However, conclusions about
reasons are primarily guessing, since it is hard to fully understand the model’s “thoughts”.
Explaining the real reasons behind a model’s behavior is an ongoing research area, which
goes beyond the thesis’s scope [Zha+24b].

Integration of the Semantic Similarity Analysis

In addition to the perturbation-specific results, the semantic similarity analysis is incorpo-
rated into the evaluation. This additional analysis offers insights into why a model might
struggle with certain perturbations and verifies whether the implemented perturbations
are sufficiently similar to enable a meaningful robustness assessment.

Model Comparative Analysis

By applying the same methodology across different models, their robustness properties
can be systematically compared. A separate baseline must be established for each model
to account for model-specific non-deterministic behavior and to serve as a reference for
measuring robustness.

This comprehensive robustness evaluation methodology enables a precise, statistically
referenced analysis of the robustness of an LLM-based code translation system and presents
all information needed to empirically answer the RQs in the final Chapter 10.



5 Experimental Setup and Baseline
Analysis

This chapter lays the groundwork for evaluating the code translation system featuring
GPT-4o-mini. It establishes the baseline performance of the default translation pipeline,
which utilizes feedback loops in Step II of the framework (Section 4.3). Understanding this
baseline is crucial before assessing the system’s robustness against perturbations in the
subsequent chapters.

To enable a meaningful interpretation of robustness results later, this chapter first
examines the baseline performance of the code translation system without any perturbations.
This baseline aims to capture the inherent fluctuation of the system. Quantifying this
noise is essential for assessing the system’s robustness later and differentiating between
inherent model variability and true non-robust behavior when perturbations are applied.
This analysis provides the foundation for addressing RQ2 (“How does one differentiate
between inherent LLM nondeterminism (noise) and true robustness deficits?”).

Before examining the baseline, the chapter explains the experimental setup, including
the dataset that is used for the robustness evaluation across the thesis. Furthermore, the
utilized configurations of the perturbation strategies are presented.

5.1 Experimental Setup
This section explains the preliminaries that are necessary to perform and evaluate robust-
ness experiments. That includes explaining the benchmark dataset, which was used as
input to the proposed framework, and also the evaluated LLMs and their parameters. Fur-
thermore, the section details the applied perturbation strategies and their configurations.

5.1.1 Benchmark Dataset
All experiments were conducted on the same benchmark dataset. This section presents a
profound investigation of the dataset to enable a detailed interpretation of the experiment
results.

The dataset was prepared by Bosch and has been used in previous in-house code trans-
lation evaluations with their designed code translation system explained in Section 4.3.4.
As mentioned in Section 4.2.4, a well-defined dataset is essential for a thorough evaluation.

The dataset consists of 50 C files that include 76 functions. 30 of these files are internal
automotive embedded code that were extracted from real-world Bosch projects [HQS24].
Using such real-world code allows an honest evaluation of the translation system, because
data leakage is minimized. While proprietary code does not ensure that the model has never
been trained on similar files, the chances of data leakage are reduced, in comparison to open-
source projects or well-known code generation benchmarks. Moreover, these files not only
present simple coding interview-style code, but also relevant real-world code. Specifically,
this code includes functions from different domains and layers in the AUTOSAR Classic



64 5. Experimental Setup and Baseline Analysis

architecture [AUT]. That involves low-level code, base software library code, as well as
application-level control code. Most of it is hand-written code, but some files also contain
auto-generated code.

In addition, the dataset includes ten files of open-source code that have been used
in prior LLM-based code translation work [Eni+24]. This open-source code originates
from an audio processing and sound card emulation library. The last ten files stem from
competitive programming solutions that were also used in prior works [Yan+24b; Sza+23].
This data was scraped for unsupervised learning and is thoroughly explained by the papers.
While the origin is interesting for the interpretability of results, there are other key factors
that can be characterized. For LLM-based C to Rust translation, two key factors must be
considered: the number of tokens per file and code features.

Figure 5.1: Distribution of code features and file sizes among the benchmark dataset. The
heatmap visualizes the occurrence of different code features across all files.
Darker colors indicate a higher frequency of the respective feature. The bar
plot below represents the file sizes in terms of token count on a logarithmic
scale.

Number of Tokens per File

As previous works highlighted, the number of input tokens has a big influence on the
model’s translation performance [Eni+24; Yan+24b; PBY24]. Thus, the dataset has to
include a range from small to large files, which consequently correlates to the number of
tokens. Figure 5.1 illustrates that the dataset covers a diverse range of tokens per file,
when tokenized with tiktoken1. Most files have a token count between 50 and 1000, which
represents files with 190 to 3400 characters and 10 to 110 lines of code. So the majority of
files represent rather small files, following a single responsibility [Mar14]. However, files
47 to 49 present files containing 1142-5716 tokens, which most likely results in increased
translation difficulty for these files.

1This is the tokenizer that OpenAI uses [Ope25c].
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Code Features

While the number of tokens influences a model’s translation performance, the characteristics
of the source code’s features are also a relevant part of the investigation. Specifically, as
explained in Section 2.1, there are some features in C that are not trivially translatable to
Rust.

A for-loop or a binary-expression can most likely be easily converted to Rust, as it
also includes loops and parenthesized expressions. However, Rust does not directly allow
the declaration of global variables or macros [PG24; Cai+25]. Furthermore, Rust is more
restricted in the context of pointers.

As shown in the heatmap in Figure 5.1 the dataset includes simple and complex features.
This enables the robustness evaluation of whether the model’s ability to generate alternative,
idiomatic solutions for not native Rust features is influenced by perturbations.

5.1.2 LLMs and Parameters
The experiments of this thesis utilize LLMs accessible via API and locally running LLMs.
This section briefly explains how the LLMs were chosen, highlighting the trade-off between
cost and inference time.

Azure OpenAI

Specifically, the LLMs are provided by an Azure Instance [Mic25]. This service hosts SOTA
LLMs by OpenAI, such as GPT-o1 [Ope24c], GPT-4o[Ope24b] & GPT-4o-mini [Ope24a],
or GPT-3.5-Turbo [Ope23].

Model Input Token Cost (1M Tokens) Output Token Cost (1M Tokens)
GPT-4o-mini $0,165 $0,66
GPT-3.5-turbo $1,50 $2
GPT-4o $2,75 $11
GPT-o1 $16,50 $66

Table 5.1: Comparison of available LLMs on Azure regarding price per token, based
on [Mic].

Table 5.1 illustrates the cost differences between these LLMs. Since the robustness
evaluation requires a large number of LLM-calls (see Equation (4.1)), not all available
models could be included, as this would have been too expensive. Therefore, the decision
was to focus the evaluation on GPT-4o-mini. This model is in widespread use due to
its interesting cost-performance and availability characteristics, and therefore also is the
default LLM of the code translation system. Additionally, a deterministic perturbation
experiment with GPT-3.5-turbo is feasible. This is an old, powerful model that was used
extensively in previous work.

Local Models

Besides the Azure hosted LLMs, the thesis also had access to locally running LLMs.
Although these models do not produce direct costs aside from hardware operation, their
execution time on the dataset is longer, as the models’ inference was not on optimized
hardware.



66 5. Experimental Setup and Baseline Analysis

The recent model Phi-4 [Abd+24] demonstrated acceptable runtime performance,
allowing the examination of the model’s robustness under deterministic strategies, with
𝑠 = 1 and 𝑘 = 5. The compact size and efficiency of Phi-4, combined with its open-source
availability, made it suitable for local execution despite hardware limitations. However,
since the experiment for stochastic perturbations incorporates 𝑠 = 3, the number of
runs is significantly higher than for the deterministic perturbations, which prevented the
examination of Phi-4 for this experiment.

As all models are examples of general purpose LLMs, another open model specifically
designed for code generation was evaluated, namely the 14 billion parameter version of
Qwen2.5-Coder [Hui+24]. In the subsequent sections and chapters Qwen2-5-Coder-14B
is consistently denoted as Qwen2.5-Coder because of clarity. The decision to use the
14B version was because it was the largest version of Qwen2.5-Coder that worked on
the used hardware for the experiments. Moreover, the next section will show that this
version of Qwen2.5-Coder will have approximately the same number of parameters as
Phi-4, which enables a fairer comparison. Nonetheless, the computational execution of this
model posed even greater challenges for the hardware compared to Phi-4. This resulted in
only evaluating the robustness for deterministic strategies with 𝑛 = 1, and subsequently
preventing stochastic perturbation evaluations. This limitation reduces the interpretability
of the results. However, as this would be a chance to evaluate a model exclusively trained
for code generation, the decision was made to perform at least one run.

LLM Settings

Unlike ReCode [Wan+23], all models in this thesis are used with their default parameters,
meaning no greedy-sampling is applied.

The major goal of this thesis is to provide a robustness evaluation for LLM-based
code translation in a real-world environment. Since the evaluated code translation sys-
tem operates with default parameter settings, no modifications were made, as variations
in temperature values and sampling methods are known to significantly impact perfor-
mance [Liu+23]. In detail, the temperature is set to 0.7 by default for all models.

Furthermore, for a better interpretation, the size of the relevant models should be men-
tioned (see Table 5.2). While the model sizes are known for the local models Phi-4 [Abd+25]
and Qwen2.5-Coder [Hui+25], the number of parameters for the GPT models has never
been officially published. However, a recent paper by Mircosoft [Aba+24] estimated the
model size of GPT-4o-mini, and has since then been commonly taken as a reference. For
GPT-3.5-turbo, multiple sources mention twenty billion parameters. This goes back to this
Forbes article [Far17], and was also referenced in a paper by Microsoft [Sin+23], which was
later withdrawn and released without giving information about GPT-3.5-turbo’s parameter
size. So the given approximation for GPT-3.5-turbo is very uncertain.

Model Number of Parameters
GPT-4o-mini ≈ 8 billion
Phi-4 14 billion
Qwen2.5-Coder 14.7 billion
GPT-3.5-turbo ≈ 20 billion

Table 5.2: Comparison of number of parameters of the relevant LLMs.
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5.1.3 Perturbation Configurations
As explained in Section 4.2 Step I of the framework performs the perturbations based
on a configuration. This section details the applied perturbation strategies and utilizes
embedding models to illustrate the similarity between perturbed prompts.

To address the RQs, this thesis defines two configurations: one for deterministic and
one for stochastic perturbations.

Deterministic Perturbations

The deterministic configuration utilized 12 perturbation strategies, which resulted in 20
perturbed datasets, including one Identity dataset. The Strategies Backtranslation,
CodeFormat, and Translation were performed with multiple parameters, which explains
why there are more perturbation datasets than strategies. The distinct perturbations are
included in Table 4.1 and Table A.1.

Specifically, there are three perturbations on the instruction, four on comments, and 14
perturbations targeting code.

Perturbations Targeting Comments and Code The perturbations targeting code and
comments are visualized in Figure 5.2.

Specifically, the figure visualizes embeddings generated by an OpenAI embedding model2
for all files across all perturbation datasets, reduced in dimensionality using Uniform
Manifold Approximation and Projection (UMAP) [MH18].

This visualization represents file similarities. Files positioned closer together are consid-
ered more similar by the embedding model.

The plot indicates that perturbation strategies produce highly similar files, as points
of the same color are clustered together. This aligns with the requirement of semantical
equivalence for perturbations.

Only the ABC perturbation appears to introduce greater variance, as its points are
more distant from the belonging Identity for most files.

However, this does not inevitably mean that ABC produces very different files. ABC
is a perturbation that results in all files having identical identifier names. Consequently,
this leads to each ABC file being also similar to the other ABC files, which results in
the points not only being drawn to the Identity of the same file, but also to other ABC
perturbations.

A closer examination of the Identity points reveals that files 35, 36, and 37 (UMAP
Dimension 1: 12.5-15, Dimension 2: 25) are very close to each other. Figure 5.1 further
confirms this, as files 35, 36, and 37 exhibit similar code features and token lengths.

The alignment between Figure 5.1 and the UMAP plot, along with the clear clustering
between other files, suggests that the embedding model effectively captures differences in
similarity.

When incorporating the magnitude of perturbation change into the robustness evaluation,
this is important to keep in mind.

Perturbations Targeting the Instruction Figure 5.2 only visualized perturbations on
the code part. Hence Figure A.1 visualizes the perturbations targeting the instruction, to
illustrate all deterministic perturbations.

2The exact model is text-embedding-ada-002 [Ope]
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Figure 5.2: UMAP embeddings of the 50 color-coded code files, each subjected to multiple
deterministic perturbation strategies indicated by different markers. The plot
shows that the different files still form clusters with their perturbations,
suggesting that the perturbation strategies produced semantically similar
code.

Since the perturbed instructions are identical for all files among the same perturbation
strategies, this plot is included in the Appendix.

Stochastic Perturbations

The configuration for the stochastic perturbations utilized 11 strategies and Identity
that resulted in 16 perturbation datasets (48 when considering 𝑠 = 3), four instruction
perturbations, two perturbations on comments, and ten on code.

Specifically, Butterfinger and ChangeCharCase were performed on all three different
perturbation targets, resulting in more datasets than stochastic perturbation strategies.

Perturbations Targeting Comments and Code Figure 5.3 visualizes the embeddings of
the perturbations with UMAP, similar to the figure for deterministic strategies.

The plot also shows that the perturbations produced code similar to the Identity, as
the different files are mostly separated by their position.

However, there is a cluster in the center of the graphic that shows an overlap of Dead-
CodeInsertion for different colors. This is explainable because the DeadCodeInsertion
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Figure 5.3: UMAP embeddings of the 50 color-coded code files, each subjected to multiple
stochastic perturbation strategies indicated by different markers. The plot
shows that the different files still form clusters with their perturbations,
suggesting that the perturbation strategies produced semantically similar
code.

adds predefined code snippets to the code. The more of these snippets that can be added
to a file, the more similar it will get to another file that has a large ratio of inserted dead
code snippets. Therefore, it is reasonable that some files have overlapping embeddings.
This does not necessarily imply a violation of the semantic similarity requirement, instead,
files with extensive dead code insertions are more similar to other extensive dead code
perturbed files than to their original Identity. The cosine similarity to the Identity may
not be large, which is investigated in Chapter 8.

The same can be found in the bottom right, for FunctionSignatureChange, which
follows the same explanation as for the overlap of DeadCodeInsertion. In contrast
to DeadCodeInsertion, FunctionSignatureChange adds predefined parameters to
function definitions, making the perturbed code more similar to each other.

Perturbations targeting the Instruction Figure 5.4 visualizes the embedding UMAP of
the stochastic perturbations on instructions.

The plot shows that all perturbation strategies are more similar to each other than the
Identity. However, some Butterfinger points appear close to the Identity, likely due to
the low probability (5%) of a character replacement. There may have been cases where
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Figure 5.4: UMAP embeddings of the 50 color-coded files’ instructions, each subjected to
multiple stochastic perturbation strategies indicated by different markers. The
plot shows that the different files still form clusters with their perturbations,
suggesting that the perturbation strategies produced semantically similar
instructions.

the Butterfinger did not produce a single change.
Whether the great distance to the Identity describes that the perturbations produced

highly semantically different prompts remains to be investigated in Chapter 8. Recall that
UMAP shows the relation between all files and not directly the magnitude of difference
with respect to the Identity.

It can also be found that Butterfinger is overlapping with ChangeCharCase, sug-
gesting that the model detects that the produced perturbations are an artifact of noise,
and may be closely related.

5.2 Baseline Performance and Model Noise
This section establishes the normal performance characteristics of GPT-4o-mini with
feedback loops, when translating code without any input perturbations. It quantifies
the model’s expected success rates and inherent output variability, providing essential
knowledge for interpreting the robustness experiments presented in subsequent chapters.

5.2.1 Motivation
Before assessing the impact of various perturbations, it is crucial to understand how the
model behaves under ideal conditions. The inherent nondeterminism of LLMs can cause
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performance fluctuations even with identical inputs. This experiment aims to quantify this
baseline variability for GPT-4o-mini. Establishing this baseline is necessary for addressing
RQ2 (“How does one differentiate between inherent LLM nondeterminism (noise) and true
robustness deficits?”)

Solving this question is important for a comprehensive robustness evaluation. If we
cannot isolate the model’s normal fluctuations, we risk attributing random noise as non-
robust behavior. By quantifying GPT-4o-mini’s performance variability under unchanged
conditions, this baseline experiment lays the groundwork for accurately assessing whether
observed performance drops in subsequent experiments are due to perturbations or simply
stochastic noise.

The underlying methodology for this differentiation is detailed in Section 4.5.1.

5.2.2 Obtaining Baseline Data
This baseline analysis utilizes data generated using the Identity perturbation, meaning
the original C files and the standard translation instructions without modification were
used as input to the translation system.

The Identity perturbation serves as a baseline condition and is included in both the
deterministic and stochastic perturbation experiments detailed in Chapter 6. The deter-
ministic experiments contribute 𝑛 = 5 runs for Identity, and the stochastic experiments
contribute 𝑠 = 3× 𝑛 = 5 = 15 runs (one set of 5 for each seed). This results in a 𝑁𝑡𝑜𝑡𝑎𝑙 of 20
available runs for the unperturbed files.

Therefore, without performing dedicated experiments solely for the baseline, these 20
existing runs are leveraged to establish the baseline performance and estimate the model’s
inherent fluctuations when evaluating with 𝑅𝑃𝑠@𝑘.

The choice of 𝑛 = 5 repetitions per perturbation represents a trade-off. While more runs
would yield statistically more stable estimates, each additional run significantly impacts
the total number of LLM calls, increasing costs and experiment runtime. Thus, 𝑛 = 5 was
deemed a practical balance between a meaningful estimation and resource, as well as time
constraints for the thesis.

5.2.3 Baseline Performance of GPT-4o-mini
Before quantifying the noise, the regular baseline performance of GPT-4o-mini on the
Identity is examined. As noted previously, the later robustness experiments on GPT-4o-
mini yield 20 runs for the Identity dataset, where each run measures compilation success
and fuzzing success.

Using the defined concept, there are
(20

5
)
= 15504 values for each 1 ≤ 𝑘 ≤ 5 of 𝑅𝑃1@𝑘.

Furthermore there are 10, 000 bootstrapped samples of the
((20

3 )
5
)
= 1.6 × 1013 𝑅𝑃3@𝑘

values for each 1 ≤ 𝑘 ≤ 5.
Figure 5.5 visualizes the mean 𝑅𝑃𝑠@5 among these values for compilation success and

fuzzing success. Specifically, the 𝑅𝑃3@5 (orange) bars are in front of the 𝑅𝑃1@5 (blue)
bars, which is done because the mean of 𝑅𝑃1@5 ≥ 𝑅𝑃3@5 for all files.

Since the later experiments mostly focus on 𝑘 = 5 the the evaluation of GPT-4o-
mini’s baseline performance also focuses on 𝑘 = 5. Furthermore, when having 𝑛 = 𝑘

the RP𝑠@k values can either be 1 or 0. As long as at least one sample of five runs is
correct, the probability of drawing this in 𝑘 = 5 samples is 1. This enables an easier and
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(a) Barplot for 𝑅𝑃1@5 and 𝑅𝑃3@5 on compilation success.

(b) Barplot for 𝑅𝑃1@5 and 𝑅𝑃3@5 on fuzzing success.

Figure 5.5: Barplots showing the particular file translation results with GPT-4o-mini
utilizing RP𝑠@k for compilation success and fuzzing success. 𝑅𝑃3@5 (orange)
is in front of 𝑅𝑃1@5 (blue), as the latter one is always at least as good as
𝑅𝑃3@5.

more explainable interpretation. Nevertheless, Appendix A.3 briefly discusses the baseline
performance for 1 ≤ 𝑘 ≤ 5.

Baseline for Compilation Success

Figure 5.5a illustrates the mean translation correctness with respect to compilation success
(y-axis) for all files in the dataset (x-axis). For 𝑠 = 1, all files of the dataset were successfully
translated into compiling Rust code. Specifically, aligned with the definition of pass@k,
this means that the probability of generating at least one compiling Rust code within the
five runs is ≈ 100% for each file. A close examination of Figure 5.5a reveals that the blue
bar for file 49 is not exactly at 1.0, but rather around 0.996. In addition, Table 5.3 shows a
standard deviation of 0.001, indicating that there is very little variation among the results,
which is likely due to file 49.

When applying the stricter metric with 𝑠 = 3, the general observation remains similar,
although the difference for file 49 becomes more significant, with the probability dropping
to 66.33%. This aligns with the expectation that 𝑅𝑃𝑠@𝑘 becomes more challenging as
𝑠 increases. Furthermore, file 49 has the highest token count (Figure 5.1). The drop to
66.33% supports related findings [Eni+24; Yan+24b; PBY24] indicating that larger code
segments can reduce translation performance.
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Overall GPT-4o-mini demonstrates strong performance in translating the C files into
compiling Rust code, even under the stricter 𝑅𝑃3@5. This is important because an already
high baseline for compilation success makes subsequent robustness experiments more
revealing. Perturbations that significantly reduce the compilation rates thereby indicate
non-robust behavior.

However, compilation success alone is insufficient for fully assessing the code translation
capability of a model. A successfully compiled file does not necessarily indicate correct
translation semantics, which is crucial when translating code. The fuzzing success metric
explores whether the compiled code behaves as intended.

Compilation Success Fuzzing Success
𝑅𝑃1@5 1.0 ± 0.001 0.787 ± 0.017
𝑅𝑃3@5 0.993 ± 0.009 0.739 ± 0.007

Table 5.3: Baseline mean ± standard deviation translation success with GPT-4o-mini
among all files utilizing RP𝑠@k for compilation success and fuzzing success.

Baseline for Fuzzing Success

Table 5.3 reveals that translating into semantically equivalent Rust code is indeed more
challenging than achieving compilation success. For 𝑅𝑃1@5, GPT-4o-mini yields a mean of
78.7% across all files, with a higher standard deviation of 0.017 compared to compilation
success’s variation. Figure 5.5b illustrates how these 𝑅𝑃𝑠@5 results (y-axis) vary among
different files (x-axis), which can be grouped into three categories perfect, incorrect, and
variational.

perfect For a total of 37 files GPT-4o-mini achieves a mean 𝑅𝑃1@5 of around 100%.
Increasing 𝑠, affects only three of these files (i.e., 37, 39, and 44), with 44 experiencing the
only noteworthy drop (0.08).

Consequently, even with 𝑠 = 3, the fuzzing success for this group remains strong. These
37 files represent 74% of the dataset, which is a good performance overall. However, there
are also files that, on average, never produce semantically equivalent results.

incorrect Files 2, 18, 23, 36, 43, 46, 48, and 49 show a mean 𝑅𝑃1@5 of 0.0. While this
also correlates with the higher difficulty for increasing token counts, the files 2, 18, 23, and
36 are surprising outliers, given that they are surrounded by perfect translations and the
x-axis as well as the file ID is sorted by token count.

Hence, these failures cannot simply be explained by the token count. Earlier, Section 5.1.1
discussed potentially challenging code features for a translation from C to Rust. However,
comparing the features of the surprisingly failing files in Figure 5.1, does not suggest a
feature that introduces such a failure. Recalling Figure 5.2, it is even more surprising that
36 failed. The files 35, 36, and 37 have very similar token counts, code features, and are
also very closely related according to the embedding. 35 and 37 show perfect translation
results, whereas 36 failed completely. This indicates that the failing fuzzing success may
result from highly individual or subtle aspects.
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Figure 5.6: Heatmap showing error rates in % for the GPT-4o-mini Identity runs across
all files. Fuzzing Exception denotes unforeseen failures of the differential
fuzzing mechanism. Fuzzing Setup errors describe that the model generated
not the same function names as in the C code. Translation System summarizes
problems in the evaluated code translation system. LLM API includes both
Internal Server Error [Mozb] or Bad Request [Moza] that showed in some
experiments.

As mentioned in Section 4.3.4 differential fuzzing is an experimental process and can
produce unexpected errors. Similarly, the tested code translation system in general, and
the API service, can also produce unforeseen inconsistencies. Figure 5.6 presents the
encountered error rates for each file among all Identity runs. Specifically, the error rate
describes the percentage of all runs for a file in which an error occurred. Consequently, a
50% error rate would mean that such an error occurred in ten of the 20 runs for the file.

Comparing the error rates per file in Figure 5.6 and the fuzzing success in Figure 5.5b
highlights that error rates between 5% − 10% do not necessarily affect the performance
when evaluating with 𝑛 = 𝑘 = 5. Specifically, the files 0, 4, 7, 34, or 39 have error rates
of 5-10%, nonetheless they resulted in perfectly translated files. This is because 𝑅𝑃𝑠@𝑘

returns 1 as long as one run resulted in a correct output. Hence, there have to be at least
five failing runs (25% of 20 runs) to prevent a group from succeeding completely. As the
mean 𝑅𝑃𝑠@𝑘 is calculated over all

(20
5
)

groups of five, such an effect would then show only
in one single group. Nevertheless, in this case, there would be other groups that contain
errors, and the chance of involving a correct translation is decreased with every failing
run, but yet such error rates cannot directly explain incorrect files.

That highlights that 𝑘 = 5 is an appropriate value for the robustness evaluation, as
it is not sensitive to minor inconsistencies produced by the experimental design of the
code translation system and proposed framework. Therefore, perturbations that heavily
influence the model’s performance show meaningful robustness deficiencies.

Other than that, file 18 involved fuzzing exceptions in 60% of the runs and yet Figure 5.5b
shows a mean 𝑅𝑃𝑠@5 of 0. That means that the fuzzing exceptions alone are not the reason
for the file failing, but also incorrect translations. Furthermore, a similar behavior can
be observed for file 43 that produced fuzzing setup errors in 15% of runs, yet resulted
in 𝑅𝑃𝑠@5 of 0.0. The only incorrect file that is directly and unquestionably caused by
errors is 46, which produces fuzzing setup errors in all of its runs. However, these errors
describe the model not accurately translating the function names, such that the differential
fuzzer cannot create one-to-one comparisons. This behavior can be deemed as an incorrect
translation, meaning that a 𝑅𝑃𝑠@5 of 0.0 accurately represents the model’s performance for
this file. Lastly, files 48 and 49 involve error rates of 20%, or 25%, while these higher could
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in theory slightly influence the 𝑅𝑃𝑠@5, this cannot explain files having a zero probability
of being translated correctly.

This highlights again that failures stem from highly individual factors.

variational Files 31, 40 − 42, and 47 have 𝑅𝑃1@5 values ranging between 25% and 81%.
With 𝑠 = 3, their means drop drastically. This is an expected behavior, if the model’s
outputs vary from run to run, it becomes increasingly unlikely to produce three correct
solutions in separate attempts (𝑠 = 3).

Considering this, the perfect files are even more meaningful for the robustness evaluation,
since this really means that they have been consistently translated semantically correctly.

Furthermore, error rates can be excluded as a reason for variational results. The only
variational file with errors is 42, and the error rate only refers to one single run, which, by
definition of the experiment, can only have a small effect on the metric.

Overall, the baseline translation performance of GPT-4o-mini is not perfect with the
used code translation system. However, the results are very well suited for a robustness
evaluation. Subsequent experiments will demonstrate whether the model can still achieve
74% perfect and consistent results under perturbations. Furthermore, it is possible that
perturbations reveal improved performance for variational or incorrect files. Hence, these
experiments may not only show a performance drop but also a performance increase,
which, according to the definition, would both be non-robust.

Before examining this, the baseline experiment has yet to show the inherent model noise.
While Figure 5.5 might seem quite consistent, these results represent the mean over a very
large number of potential 𝑅𝑃𝑠@5 measurements. To accurately exclude nondeterminism,
this is not sufficient, as a seemingly non-robust result under a perturbation for 𝑛 = 𝑘 = 5
could also be a snapshot of the model producing a result worse than the mean performance
for Identity.

5.2.4 Noise Analysis of GPT-4o-mini
This analysis should present the distribution of RP𝑠@k values to show potential performance
variations on identical inputs. Perturbations that represent outliers to the distribution are
more likely to be caused by the effect of the perturbation.

Again, the evaluation is conducted for both scenarios 𝑅𝑃1@𝑘 and 𝑅𝑃3@𝑘 . Furthermore,
the subsequent sections discuss the fluctuations for 𝑘 = 5, as this aligns with the previously
examined baseline performance. When evaluating the robustness with different 𝑘 values,
the adequate noise measurement has to be taken into account.

Baseline for Deterministic Perturbation Strategies

The baseline for deterministic perturbation strategies is measured for 𝑅𝑃1@5. Figure 5.7
illustrates, that the variation for compilation success is negligible whereas for fuzzing
success there are noteworthy fluctuations. By calculating all possible

(20
5
)

subsets of
𝑅𝑃1@𝑘 compilation success values, it becomes clear that almost every group produces
values of 𝑅𝑃1@5 of 100%. There is only a tiny bar at 0.98, which is so tiny that it does
not affect the mean with three decimal places. This probably is the small variance that is
produced by file 49. As stated earlier, the file was the only one that produced an 𝑅𝑃1@5
smaller than 1.0.
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Figure 5.7: Horizontal Histograms illustrating the distribution of GPT-4o-mini 𝑅𝑃1@5
on compilation success (left) and fuzzing success (right). The x-axis indicates
the frequency of 𝑅𝑃1@5 values, while the y-axis shows the actual 𝑅𝑃1@5 value.
Dashed lines mark the mean (gray), the 5th and 95th percentile (yellow), as
well as the Z-Score of 3.29. The right y-axis shows the equivalent Z-Score.

Fuzzing success involves more fluctuations, which are most likely due to the variational
files. The model did not consistently produce good results for these files, which has an effect
on the average dataset performance. In the worst case, the 𝑅𝑃1@5 might be calculated for
a subset that had bad results for variational files. However, overall, the fluctuation is quite
balanced. The upper threshold is at 𝑅𝑃3@5 : 0.84, the lower at 𝑅𝑃3@5 : 0.73, whereas
the mean is at 𝑅𝑃3@5 : 0.79. The distribution clearly shows that results with an absolute
Z-Score > 3.29 are very likely not to be nondeterministic noise, as the distribution is quite
sharp.

Baseline for Stochastic Perturbation Strategies

The baseline for stochastic perturbation strategies is measured for 𝑅𝑃3@5. Figure 5.8
presents that there are minor fluctuations for compilation success and fuzzing success.
As Figure 5.5a showed already, file 49 is variational for 𝑠 = 3, which explains why in
some bootstrap samples a 𝑅𝑃3@5 of 0.98, and in some 1.0 is calculated. Comparing the
distribution for 𝑠 = 1 and 𝑠 = 3 supports this finding. However, with a Z-Score of 3.29 at
0.962, the model still produced consistent output.

Furthermore, Figure 5.8 illustrates that the fluctuation for fuzzing success decreases
with 𝑠 = 3, compared to 𝑠 = 1. This is an explainable behavior, as the variational files
for 𝑠 = 1 mostly become incorrect files for 𝑠 = 3. The fewer variational files, the more
consistent the dataset performance. Consequently, stochastic perturbation results are less
prone to nondeterministic fluctuations. Perturbations that produce 𝑅𝑃3@5 ≤ 0.716 or
𝑅𝑃3@5 ≥ 0.763 can be considered non-robust.
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Figure 5.8: Histograms illustrating the bootstrap-sampled distribution of GPT-4o-mini
𝑅𝑃3@5 on compilation success (left) and fuzzing success (right). The x-axis
indicates the frequency of 𝑅𝑃3@5 values, while the y-axis shows the actual
𝑅𝑃3@5 value. Dashed lines mark the mean (gray), the 5th and 95th percentile
(yellow), as well as the Z-Score of 3.29. The right y-axis shows the equivalent
Z-Score.

5.3 Summary and Relevance of the Chapter
This chapter detailed the experimental setup, including the benchmark dataset, the LLMs
evaluated, as well as the utilized deterministic and stochastic perturbation strategies.

To prepare an interpretable robustness evaluation, it established the baseline performance
of the GPT-4o-mini based code translation system and analyzed its inherent noise using
the proposed methodology relying on 𝑅𝑃𝑠@𝑘 metrics and Z-Scores. This baseline provides
the necessary reference point for the subsequent chapter, which will now evaluate the
system’s robustness when prompted with the defined perturbations.
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6 Robustness Analysis under
Perturbations

Building upon the experimental setup and baseline performance established in Chapter 5,
this chapter evaluates the robustness of the GPT-4o-mini based code translation sys-
tem when prompted with perturbations. It presents the results for both deterministic
(Section 6.1) and stochastic (Section 6.2) perturbation strategies, as defined previously.

The analysis utilizes the baseline metrics 𝑅𝑃𝑠@𝑘 and noise thresholds (Z-Scores) deter-
mined in Section 5.2 to differentiate between inherent model fluctuations and significant
robustness deficits caused by the perturbations.

By examining the robustness of GPT-4o-mini under the perturbation strategies, the
chapter directly proves that the proposed framework and its components can be used for a
comprehensive robustness evaluation, which directly addresses RQ1 (“What methodologies
and components should be integrated into a comprehensive evaluation framework to assess
the robustness of an LLM-based code translation system?”).

6.1 Robustness under Deterministic Perturbations
This section presents the framework’s results for GPT-4o-mini under deterministic per-
turbations. By thoroughly analyzing the translation results according to the framework’s
metrics, a robustness evaluation is conducted.

6.1.1 Motivation
This experiment empirically demonstrates that the proposed methodology of the thesis
answers RQ1. Specifically, this experiment utilizes the three-step framework to assess the
code translation robustness of GPT-4o-mini under deterministic perturbations. Addition-
ally, it leverages the insights of the model’s baseline noise assessment to classify which
perturbations cause significant robustness deficiencies.

6.1.2 Experimental Design
As detailed in previous sections, the robustness under deterministic perturbations is
evaluated with 𝑛 = 5 and 𝑠 = 1 for 20 different perturbed datasets resulting of 12
perturbation strategies and one additional Identity dataset.

However, analysis revealed that the Korean Translation perturbation on code produced
false-positive fuzzing results. The differential fuzzer of the code translation systems had
problems identifying fuzzable functions with Korean characters. Since the fuzzer found
no fuzzable functions, it mistakenly interpreted the results as successful translations. As
the evaluation utilizes aggregated results, the decision was to exclude the results for
this perturbation, leading to 19 perturbed datasets that were evaluated and classified by
utilizing the prior baseline assessment results.
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6.1.3 Results
The robustness evaluation is presented at multiple detail levels, starting with the general
robustness of GPT-4o-mini across all deterministic perturbations.

The analysis increases its detail by distinguishing between perturbation target and
perturbation levels, described in Section 4.2.2. After this, the results across the single
perturbations are discussed, and lastly, the most relevant perturbations are evaluated at
the file level.

As the aggregated results for target and level lose their detail, the most interesting and
valuable findings are in the analysis of single perturbation strategies.

General Robustness

Table 6.1 presents the deterministic perturbation effects on GPT-4o-mini’s translation
performance. For a direct comparison, the baseline correctness is included in the table. This
data is the aggregation of all results of all deterministic perturbations. The aggregation
shows that there is only a small amount of performance change.1

For fuzzing success, performance increased by 1.1%. However, a Z-Score of 0.518 suggests
this may be due to the model’s normal variability. In contrast to fuzzing success, compilation
success resulted in a more outlying change. However, the Z-Score does not cross the
threshold of 3.29 to reduce the chance of it being nondeterministic noise. Furthermore, the
amount of change is 0.3% and very small. The higher Z-Score is a result of the model’s
compilation success baseline, which included very few fluctuations.

While the model produces robust results for the aggregation of all perturbations, it may
show nondeterministic behavior for certain perturbation targets.

Correctness Fuzzing Success Compilation Success
Metric Baseline Perturbation Baseline Perturbation
𝑅𝑃1@5 ↑ 0.787 0.796 1.000 0.997
𝑅𝐶1@5 ↓ 0.000 0.011 0.000 0.003
Z-Score 0.000 0.518 0.000 -2.44

Table 6.1: General robustness results of GPT-4o-mini under deterministic perturbations.
The values are aggregated using the mean for all perturbations. The Z-Score
shows the deviation from the baseline’s 𝑅𝑃1@5 mean.

Robustness on Deterministic Perturbation Targets

Table 6.2 presents the aggregated evaluation results across the different perturbation
targets. As described in Section 4.2.2, the expectation was that instruction perturbations
might have more impact on the model’s translation performance. Comparing the robust
pass and robust change values for fuzzing success might suggest that this expectation is
confirmed. However, the low Z-Score values show that the change could also be due to
nondeterminism, making a detailed interpretation of these results not meaningful, as it
may produce completely different results in another experiment run.

1𝑅𝐶1@5 and Z-Score are calculated based on the original values without rounding to three decimal
places. This is done for all subsequent tables.



6. Robustness Analysis under Perturbations 81

While there is no significant change in fuzzing success, perturbations on comments seem
to produce a significant decrease in compilation success, with a Z-Score of −4.107. However,
the 𝑅𝐶1@5 of 0.5% is still very small, and the higher Z-Score is again because of the model
not producing fluctuations for the baseline. Nevertheless, the data suggests that even such
a small change is an outlier to the baseline performance, and subsequent evaluation details
will describe if this behavior can be explained.

Metric Baseline Instruction Comments Code
Fuzzing Success
𝑅𝑃1@5 ↑ 0.787 0.807 0.805 0.791
𝑅𝐶1@5 ↓ 0.000 0.025 0.023 0.005
Z-Score 0.000 1.138 1.041 0.214
Compilation Success
𝑅𝑃1@5 ↑ 1.000 1.000 0.995 0.997
𝑅𝐶1@5 ↓ 0.000 0.000 0.005 0.003
Z-Score 0.000 0.060 -4.107 -2.504

Table 6.2: Deterministic perturbation correctness results grouped by perturbation target.
The values are aggregated using the mean for the perturbations of each target.
The Z-Score shows the deviation from the baseline’s 𝑅𝑃1@5 mean.

Results per Perturbation Level

Table 6.3 details that none of the perturbation levels lead to a rigorous correctness change
for fuzzing success.

When focusing on the more important fuzzing success, instruction, level I, and level V
even produced a minor performance increase. According to 𝑅𝐶1@5, level VI produced the
most change with 6%. While six percent might suggest non-robust behavior, the Z-Score
details that these changes are still in the expected fluctuation range of the model.

However, according to the Z-Score, the model significantly decreases compilation success
under level VI perturbations. Despite the large Z-Score of −16.609, the actual performance
degradation is only 2%. Consequently, the model technically showed non-robust behavior
in compilation success, but not in fuzzing success. So in practice, the code translation
system will not be significantly affected by code with varying decision logic or expressions,
as this is the focus on level VI.

Additionally, the meaningful changes of perturbations on comments get lost when
grouped with other perturbations in level I. This highlights that a specific analysis of the
changes by single perturbations might show more explainable findings.

Results per Perturbation

Previous aggregated analysis presented that there was no significant change in fuzzing
success for a perturbation target or level. Yet, perturbation on comments, or those of level
VI, suggested non-robust behavior for compilation success.

Figure 6.1 visualizes the translation results for the 19 perturbation strategies and the
five Identity runs conducted in this experiment. In addition, the figure shows the baseline



82 6. Robustness Analysis under Perturbations

Metric Baseline Instruction I II V VI
Fuzzing Success
𝑅𝑃1@5 ↑ 0.787 0.807 0.813 0.786 0.800 0.740
𝑅𝐶1@5 ↓ 0.000 0.025 0.033 0.002 0.016 0.060
Z-Score 0.000 1.138 1.525 -0.080 0.750 -2.737
Compilation Success
𝑅𝑃1@5 ↑ 1.000 1.000 0.997 0.997 1.000 0.980
𝑅𝐶1@5 ↓ 0.000 0.000 0.003 0.003 0.000 0.020
Z-Score 0.000 0.060 -2.718 -2.321 0.060 -16.609

Table 6.3: Deterministic perturbations robustness evaluation results for 𝑠 = 1 and 𝑘 = 5.
The values are aggregated using the mean for the perturbations of each level.
The Z-Score shows the deviation from the baseline’s 𝑅𝑃1@5 mean.

performance of the mean Identity across the
(20

5
)

groups, whose mean was also used for
the calculation of the Z-Score.

Figure 6.1a adheres to the previous findings, as it shows that most perturbations
did not produce a significant change to fuzzing success. However, by investigating the
single strategies, it becomes clear that at least two perturbations produced meaningful
performance changes: IdenObfuscator and Translation-GER-Comments.

Metric Baseline IdenObfuscator CodeFormat-Mozilla Translation-GER-Comments
Fuzzing Success
𝑅𝑃1@5 ↑ 0.787 0.720 0.840 0.860
𝑅𝐶1@5 ↓ 0.000 0.085 0.067 0.093
Z-Score 0.000 -3.899 3.075 4.238
Compilation Success
𝑅𝑃1@5 ↑ 1.000 0.980 1.000 1.000
𝑅𝐶1@5 ↓ 0.000 0.020 0.000 0.000
Z-Score 0.000 -16.609 0.060 0.060

Table 6.4: Overview of most meaningful deterministic perturbations according to the
Z-Score on fuzzing success for 𝑠 = 1 and 𝑘 = 5.

Table 6.4 details that IdenObfuscator yields a 8% performance degradation, resulting
in a Z-Score of −3.899. This presents a definitive outlier to the baseline’s distribution. As
this perturbation obfuscates identifier names, it suggests that GPT-4o-mini might have
difficulties with identifiers that are quite uncommon. Specifically, as this perturbation
produces names, such as _1 or _123, it might have a stronger effect on the embedding of
these tokens than other level II perturbations, which is analyzed in Chapter 8. For example,
ABC might be the most similar perturbation to IdenObfuscator, as it also produces
identifier names without real meaning. Yet, this perturbation caused less degradation,
possibly because character literals are more common as identifiers. An investigation of the
error rates per perturbation in Appendix A.4.1 shows that the model tends to translate
into identifiers with different names, leading to the fuzzer not being able to perform a
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(a) Barplot for 𝑅𝑃1@5 on fuzzing success.

(b) Barplot for 𝑅𝑃1@5 on compilation success.

Figure 6.1: Barplots showing the particular perturbation translation results with GPT-4o-
mini utilizing 𝑅𝑃1@5 for fuzzing success and compilation success. Additionally,
the Z-Score for each perturbation is included in the bars and the color
grades, whether a perturbation produced a significant change according to
the 3.29 outlier rule. Orange presents a significant performance decrease, and
green significant performance increase, both of which classify as non-robust
behavior.

comparison of functions.
Besides IdenObfuscator, Translation-GER-Comments also produced a significant

change of 9.3% performance increase. This finding is even more significant. In addition, the
German translations of instructions or code identifiers also yielded a performance increase,
yet they were not strong enough to be classified as outliers. However, this suggests that
GPT-4o-mini might exhibit non-robust behavior when dealing with varying languages.
When wanting to optimize the performance of the code translation system, one could think
of examining other languages and finding the language that consistently works best.

Another interesting perturbation is CodeFormat-Mozilla. According to the three
sigma rule [Puk94], this perturbation would have been classified as an outlier with an
𝑅𝐶1@5 of 0.067 and a Z-Score of 3.075. It seems intuitive that applying a consistent code
style across all files could improve performance by unifying code structures, making them
easier to read and understand. Furthermore, the model might have encountered many files
with similar code style during training, ultimately improving its performance. Similarly,
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the CodeFormat-LLVM also increased the performance, but to a less significant amount.
However, considering the robustness definition, a model should perform similarly on code
with different formatting styles. As CodeFormat-Mozilla almost reached the threshold,
it is considered a relevant non-robust perturbation for the subsequent discussion of the
robustness of GPT-4o-mini. However, this consideration is with less confidence than for
other perturbations.

Furthermore, the Identity fuzzing success highlights the importance of the baseline
assessment. Since the Identity underperformed in this specific five runs of the Experiment,
the 𝑅𝐶1@5 could have been interpreted differently, or by only looking at Figure 6.1a,
no perturbation would have been classified as non-robust, depending on the subjective
thoughts of the human evaluator.

While fuzzing success is the most important correctness measurement, Figure 6.1b
illustrates that IdenObfuscator already resulted in significantly less compilation success.
Moreover, the perturbations DeMorgan and Translation-KOR-Comments also re-
sulted in meaningful changes. This explains the findings in the aggregated results. Since
there is only DeMorgan as a deterministic Level VI perturbation, this value could be seen in
Table 6.3. Additionally, Translation-KOR-Comments affected the mean per comment
perturbations. While the model was robust for the other three comment perturbations, it
produced a significant outlier for Korean comments. However, since only IdenObfuscator
had a real impact on the full translation correctness in fuzzing success, the most interesting
perturbations remain IdenObfuscator, Translation-GER-Comments, and maybe
CodeFormat-Mozilla.

Before analyzing the file-level effects for these perturbations, it should be noted why
all other perturbations produced a Z-Score of 0.06 for compilation success. This can
be explained by closely investigating Figure 5.7 for compilation success. The baseline
distribution shows that there was a tiny amount of Identity runs, that produced an
𝑅𝑃1@5 of 0.98, resulting in the mean not accurately being 1.0 but rather some number,
very close to that, which is not visible in three decimal places. Since this result is very
uncommon, most perturbations produced the more common 1.0 𝑅𝑃1@5, resulting in a
small positive Z-Score.

Relevant Perturbations per File

Figure 6.2 visualizes the previously classified relevant perturbations. Recall Section 5.2.3,
the interpretation of the baseline’s fuzzing success, where results were grouped into perfect,
incorrect, and variational files. The same separation can be used for this interpretation.
Specifically, that means comparing the previous baseline’s classification against the effects
caused by the perturbations. The previous classification can still be identified in Figure 6.2,
as the blue bar shows the performance of the Sampled Identity.

perfect Investigating the perfectly translated files, details that the performance increas-
ing perturbations CodeFormat-Mozilla and Translation-GER-Comments always
produced a similar 𝑅𝑃1@5 for these files, whereas IdenObfuscator failed for the previ-
ously perfect files 7, 19, and 44. Analyzing the code features in Figure 5.1, this behavior
might be explained by files 7, 19, and 44 having more functions or variables compared to
other files classified as perfect. Consequently, the IdenObfuscator produces more changes
to the file itself when there are more identifiers in general.

If this is actually the reason cannot be definitively proven, as the decision processes
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Figure 6.2: Most relevant deterministic perturbations per file in regard to fuzzing success,
including the baseline Sampled Identity. The bar’s color determines the
perturbation strategy.

of LLMs are not explainable. The same applies to other hypotheses regarding why the
model might fail under certain perturbations. These are guesses for the observed behavior.
However, for the robustness evaluation, the primary concern is not why the model performed
differently, but the fact that it did.

incorrect Most of the incorrectly translated files were also not successful for the perturba-
tions. However, both performance-increasing perturbations were successful for file 43. The
reason for this cannot be explained by code features. Specifically, poorly formatted code
cannot be shown by the chosen code features, which may have suggested that the file was
not accurately formatted before the perturbation, explaining why CodeFormat-Mozilla
improved the results. Additionally, in regard to Translation-GER-Comments, it would
have been possible that 44 is the only incorrect file containing comments, or the file with
the most comments. But this is not the case, as other incorrect files have even more
comments and resulted in a fuzzing failure. This suggests that translating comments may
not always be enough to create performance improvements if a file cannot be accurately
translated due to other unique difficulties.

variational However, investigating the variational files shows that the German translation
of comments produced successful translations for all of these files. Specifically, this pertur-
bation never yielded worse performance than the baseline, proving why the perturbation
resulted in a higher 𝑅𝑃1@5 for all files. Furthermore, the variational 47 is the only file
where the code format produced a worse result than the comment translation, explaining
the slightly worse 𝑅𝑃1@5 for the perturbation.

Furthermore, the IdenObfuscator expectantly decreased the performance for most
variational files, except for 31 and 40. While 40 is a file without variables, 31 involves
three variables (Figure 5.1). Therefore, this cannot be simply explained by the number of
identifiers and subsequent change of the perturbation. As the baseline experiment pointed
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out, certain errors can impact the performance of the translation results. As previously
mentioned, the most impactful error rate for IdenObfuscator is the fuzzing setup, which
means that the model did not produce identical identifier names, and therefore did not
adhere to the actual task. However, these did not strongly affect the variational files. The
actual amounts are briefly explained in Appendix A.4.1.

Considering that these were the most significant perturbations, GPT-4o-mini only
showed minor non-robust behaviors to the files where changes would have been expected.
While IdenObfuscator failed for some perfect files, or the Translation and CodeFormat
improved a single incorrect file, the most changes were noticed on the variational files, which
were prone to fluctuations even without perturbations. Consequently, the evaluation of
deterministic strategies with the feedback loops suggests that GPT-4o-mini is quite robust,
with tiny deficits in code formatting styles, comment language, or identifier obfuscation.

The next Experiment will show if GPT-4o-mini is comparably robust under stochastic
perturbations and the less fluctuating 𝑅𝑃3@5 metric.

6.2 Robustness under Stochastic Perturbations
This section analyzes the framework’s results for GPT-4o-mini under stochastic-perturbations.
As detailed previously, this experiment utilizes the concept of multiple seeds per perturba-
tion. Therefore, 𝑅𝑃3@𝑘 is used for the evaluation of the results. The baseline experiment
highlighted that higher 𝑠 in 𝑅𝑃𝑠@𝑘 prunes nondeterministic fluctuation, leading to the base-
line being less variational. This may improve the interpretability of non-robust behaviors,
as small performance changes display significant change to the baseline’s distribution.

6.2.1 Motivation
The motivation of this experiment is to evaluate the code translation robustness of GPT-
4o-mini under stochastic perturbations with the more strict metric 𝑅𝑃3@𝑘. By identifying
robustness deficiencies, the framework and its components provide evidence to answer
RQ1.

6.2.2 Experimental Design
This experiment is conducted with 15 different perturbation datasets, each having 𝑠 = 3
variations. Hence, the framework utilizes 45 perturbed and 3 additional Identity datasets.
Similar to the first experiment, 𝑛 = 5, which means that each task per ⟨perturbation, seed⟩
pair is translated five times. Moreover, the results are analyzed for the complete code
translation setup process, including the feedback loop iterations.

6.2.3 Results
As for the deterministic perturbation experiment, the results are analyzed in a top-down
approach. Starting with the average robustness over the aggregation for all perturbations,
the evaluation gets more detailed by separating results per perturbation target or per-
turbation level. Lastly, the results per perturbation are examined, and the most relevant
perturbations are analyzed at the file level. Consequently, the most meaningful information
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Figure 6.3: Error rates per perturbation in % for the stochastic perturbation experiment
of GPT-4o-mini.

is in the more detailed sections. However, interpreting the general robustness capabilities
among targets and levels is also part of a comprehensive evaluation.

Before starting with the top-down approach, in this experiment, it is necessary to bring
up the error analysis before interpreting aggregated results. This is because Figure 6.3
highlights that ChangeCharCase on the instruction part of the prompt resulted in
LLM API errors. As noted before, translation system or LLM API errors do not reflect
robustness deficiencies, as fuzzing setup or fuzzing exception errors would do. Such a high
error rate makes the robustness interpretability of ChangeCharCase-Inst impossible.
Specifically, this high error is caused by Azure’s safety mechanisms, which falsely identify
these perturbed instructions as jailbreak [Pat25] attacks, returning a Bad Request response.
Considering that ChangeCharCase randomly switches a character’s case with quite high
probability (i.e., 0.30), it seems reasonable that the system may classify such a prompt
as jailbreak. Knowing this, it is necessary to exclude ChangeCharCase-Inst from the
aggregated robustness analysis.

Moreover, the same behavior can be seen for Butterfinger-Inst. However, the error
rate is much smaller, leaving room for a robustness evaluation. In addition, IncludeCom-
mentAdder also shows noticeable LLM API errors. However, these stem from partial
connection errors in a single run. While this slightly reduces the chance of choosing a correct
run in 𝑘 runs, it should not have a tremendous effect. So, both of these perturbations are
included in the aggregation, yet this information is important to keep in mind for the
interpretation.

General Robustness

Table 6.5 details the aggregated translation results for the stochastic perturbations. The
table shows a performance degradation of 3.2% under stochastic perturbations. Despite
this being a relatively moderate decrease, the Z-Score of −3.28 almost suggests significant
non-robust behavior. This matched the expectation for 𝑅𝑃3@𝑘, as it resulted in a smaller
standard deviation in the baseline distribution, thus reducing susceptibility to fluctua-
tions. Subsequently, minor percentage changes already present outliers to the baseline
performance.

It might seem surprising that compilation success has a lower Z-Score than fuzzing
success, as this was the opposite behavior for deterministic perturbations. However, recalling
the baseline on 𝑅𝑃3@5’s compilation success showed that this involved more fluctuations
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Correctness Fuzzing Success Compilation Success
Metric Baseline Perturbation Baseline Perturbation
𝑅𝑃3@5 ↑ 0.739 0.716 0.993 0.972
𝑅𝐶3@5 ↓ 0.000 0.032 0.000 0.021
Z-Score 0.000 -3.28 0.000 -2.226

Table 6.5: General robustness results of GPT-4o-mini under stochastic perturbations.
The values are aggregated using the mean for all working perturbations. The
Z-Score shows the deviation from the baseline’s 𝑅𝑃3@5 mean.

than for 𝑠 = 1. As compilation success is almost perfect with 𝑅𝑃3@5 0.993, slight variations
among the 𝑠 = 3 samples increase the standard deviation in this case. Thus, stochastic
perturbations cause larger performance changes compared to deterministic ones, but these
changes are not statistically significant when aggregated.

The following analysis among the different levels of detail will investigate, under which
conditions GPT-4o-mini showed the most robustness deficiencies.

Robustness on Stochastic Perturbation Targets

Table 6.6 shows the aggregated translation results for the three different perturbation tar-
gets. This explains where the most robustness issues stem from. Specifically, perturbations
on instructions produce an 8% performance loss in regard to fuzzing success, resulting in a
Z-Score of −8.36. This accommodates the initially expected behavior that perturbations
on instruction might have the strongest influence on perturbation results. Additionally,
these perturbations led to a substantial decrease in compilation success by 11.4%. The
stochastic perturbations contain the perturbations that produce noise with typos, where
deterministic perturbations are used rather than intentional paraphrasing approaches on
the instructions. So it is quite reasonable that the stochastic perturbations adhered more
to the expectation, as it is more difficult to maintain the intent in noisy instructions.
Chapter 8 will investigate if such difficulties can be predicted by the semantic similarity
analysis.

Besides instruction perturbations, code perturbations almost resulted in Z-Score signif-
icant performance degradation, with a Z-Score of −3.003. Considering that the 𝑅𝑃3@5
of 0.718 represents the mean, there have to be certain perturbations, or even levels, that
resulted in a Z-Score significant robustness deficiency.

Results per Perturbation Level

Table 6.7 presents that GPT-4o-mini showed significant robustness deficits only for level IV,
except at the instruction level, which already has been examined. Level IV perturbations
lead to a performance loss of 9.4%, which is very strong considering level IV aggregates
two perturbation strategies. This also shows in a clear outlying Z-Score of −9.77. The next
section examines whether this result was caused by one specific perturbation or if both
perturbations significantly impacted GPT-4o-mini.

Besides that, compilation success measured no significant changes, except for the in-
struction perturbations.
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Metric Baseline Instruction Comments Code
Fuzzing Success
𝑅𝑃3@5 ↑ 0.739 0.680 0.733 0.718
𝑅𝐶3@5 ↓ 0.000 0.080 0.008 0.029
Z-Score 0.000 -8.360 -0.841 -3.003
Compilation Success
𝑅𝑃3@5 ↑ 0.993 0.880 0.987 0.986
𝑅𝐶3@5 ↓ 0.000 0.114 0.007 0.007
Z-Score 0.000 -11.911 -0.683 -0.753

Table 6.6: Stochastic perturbation correctness results grouped by perturbation target.
The values are aggregated using the mean for the perturbations of each target.
The Z-Score shows the deviation from the baseline’s 𝑅𝑃3@5 mean.

Metric Baseline Instruction I II III IV VI
Fuzzing Success
𝑅𝑃3@5 ↑ 0.739 0.680 0.733 0.720 0.733 0.670 0.740
𝑅𝐶3@5 ↓ 0.000 0.080 0.008 0.026 0.008 0.094 0.001
Z-Score 0.000 -8.360 -0.841 -2.721 -0.841 -9.770 0.099
Compilation Success
𝑅𝑃3@5 ↑ 0.993 0.880 0.987 0.980 0.987 0.980 1.000
𝑅𝐶3@5 ↓ 0.000 0.114 0.007 0.013 0.007 0.013 0.007
Z-Score 0.000 -11.911 -0.683 -1.384 -0.683 -1.384 0.721

Table 6.7: Stochastic perturbations robustness evaluation results for 𝑠 = 3 and 𝑘 = 5. The
values are aggregated using the mean for the perturbations of each level. The
Z-Score shows the deviation from the baseline’s 𝑅𝑃3@5 mean.

Results per Perturbation

Figure 6.4 highlights that most of the stochastic perturbations did not cause significant
performance changes. However, there are three significant performance degradations, each
originating from perturbations at different levels.

Among these significant perturbations, LLMCodeExtraction at level IV caused the
largest drop in fuzzing success, which explains the outlying Z-Score observed at level IV.
Specifically, under this perturbation, GPT-4o-mini showed a 18.8% decrease in fuzzing
success, even though the compilation success was not strongly affected (see Table 6.8).
According to Figure 6.3, LLMCodeExtraction produced a fuzzing exception error rate of
13.73%, and a fuzzing setup error rate of 5.6%. Consequently, this perturbation caused an
unusually high number of errors, ultimately affecting fuzzing success. At first glance, the
involvement of an LLM in the perturbation might suggest that the code extraction produced
erroneous C code. However, the syntax-check implemented in Step I of the framework
proved that there were no syntax errors introduced by the perturbation itself. Furthermore,
GPT-4o-mini achieved near-baseline performance regarding compilation success for the
translated Rust code. Thus, GPT-4o-mini must have introduced inconsistencies between



90 6. Robustness Analysis under Perturbations

(a) Barplot for 𝑅𝑃3@5 on fuzzing success.

(b) Barplot for 𝑅𝑃3@5 on compilation success.

Figure 6.4: Barplots showing the particular perturbation translation results with GPT-4o-
mini utilizing 𝑅𝑃3@5 for fuzzing success and compilation success. Additionally,
the Z-Score for each perturbation is included in the bars and the color
grades, whether a perturbation produced a significant change according to
the 3.29 outlier rule. Orange presents a significant performance decrease, and
green significant performance increase, both of which classify as non-robust
behavior.

the C and Rust code, likely resulting from the increased complexity due to encapsulated
function calls. Specifically, the perturbation aims to refactor and extract certain code
snippets into functions, which are then invoked. This may add more complexity to the
control flow, leaving more room for errors in the translation. This assumption is backed
up by a small analysis of the Identity and LLMCodeExtraction datasets.

The Identity code contained a total of 18 nested function calls across all 50 files,
whereas the LLMCodeExtraction perturbation contained a notably higher average of
52.33 nested function calls across the 50 perturbed files per seed. This increase in nested
calls indicates higher complexity, which may cause translation issues.

This is an interesting robustness evaluation result, as it highlights significant weaknesses
of GPT-4o-mini when translating code with varying complexity due to nested calls. To
further prove this hypothesis, future work could evaluate the robustness on a different
benchmark dataset containing inherently more complex C files.

Besides LLMCodeExtraction causing robustness issues, Butterfinger on instructions
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Metric Baseline LLMCodeExtraction Butterfinger-Inst LLMVariableImprove
Fuzzing Success
𝑅𝑃3@5 ↑ 0.739 0.600 0.620 0.680
𝑅𝐶3@5 ↓ 0.000 0.188 0.161 0.080
Z-Score 0.000 -19.639 -16.820 -8.360
Compilation Success
𝑅𝑃3@5 ↑ 0.993 0.980 0.780 0.980
𝑅𝐶3@5 ↓ 0.000 0.013 0.215 0.013
Z-Score 0.000 -1.384 -22.438 -1.384

Table 6.8: Overview of most meaningful stochastic perturbations according to the Z-Score
on fuzzing success for 𝑠 = 3 and 𝑘 = 5.

resulted in significant performance loss. However, this perturbation already had a drastic
impact on the compilation success. That shows that the Butterfinger perturbation on
the instruction resulted in a higher difficulty for the model in understanding the general
task. While some failures may stem from the 4% error rate because of false jailbreak filters,
that does not justify the drastic performance loss of 21.5% regarding compilation success.
Recalling the deterministic perturbations, this is the only perturbation that drastically
reduced the compilation success to an 𝑅𝑃𝑠@5 of 0.78 (Table 6.8). Considering that only
compilable code can be tested for fuzzing success, a robust change of 16% is understandable
and suggests that predominantly the baseline’s incorrect files were not translated into
compilable code. Before investigating this hypothesis, the LLMVariableImprove has to
be analyzed, as it also caused a significant robust change.

As Figure 6.3 shows, LLMVariableImprove shows slight elevation for fuzzing exception
and fuzzing setup errors. However, other perturbations have similar error rates and did
not result in a significant robustness deficiency. Subsequently, this perturbation has to
reveal other problems, which may show in a more detailed analysis per file.

Relevant Perturbations per File

Figure 6.5 illustrates the relevant perturbations fuzzing success per file. Similar to Sec-
tion 5.2.3, the grouping of perfect, incorrect, and variational files is used to improve
interpretation. However, as Figure 6.5 shows, there is not a single perturbation that im-
proved an incorrect file. Furthermore, the baseline produced only two variational files with
𝑠 = 3, where one of which (42) has never been translated successfully under perturbation
and the other one (44) was deemed successful for all perturbations. Subsequently, the
analysis only focuses on the baseline’s perfect files.

Starting with LLMCodeExtraction, GPT-4o-mini fails for seven of the perfect files.
However, it could be identified no reason for the failure, because files with lower token
counts and also files with higher token counts fail. In addition, there is no code feature
that stands out, and failure may just be caused by the fact that the difficulty for each file
is increased because of the introduced encapsulation. With 𝑠 = 3, it is even harder for the
model to create a successful translation.

Same as LLMCodeExtraction, the Butterfinger-Inst perturbation fails without an
obvious pattern at first glance. However, upon closer inspection, it became clear that some
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Figure 6.5: Most relevant stochastic perturbations per file in regard to fuzzing success,
including the baseline Sampled Identity. The bar’s color determines the
perturbation strategy.

Figure 6.6: Instruction validity after Butterfinger-Inst for the baseline’s perfect fuzzing
success files. The plot also contains the closely perfect files 37 and 39 that are
not exactly at 𝑅𝑃3@5 of 1.0. A file is valid if and only if all three variations
contain the correct spelling of Rust.

perturbed instructions modified the term “Rust”, corresponding exactly to the scenario
described in Section 4.2.2. To quantify this effect, instructions were explicitly checked
for correct spelling of Rust. A file is considered valid only if all instructions across all
seeds correctly mention Rust, otherwise, it is labeled invalid. Figure 6.6 shows this validity
assessment for the baseline’s perfect files.

Using this categorization, the Pearson correlation coefficient [SBS18] between instruction
validity and fuzzing success was calculated. The coefficient, measuring the linear relationship
between validity and performance, yields a value of 0.721, indicating a strong correlation
according to [SBS18]. Consequently, GPT-4o-mini exhibited non-robust behavior primarily
when instructions were unclear or misleading. However, this is considered a reasonable
outcome and should not negatively affect the general robustness assessment of the model.

Lastly, LLMVariableImprove caused translation failures for files 13, 28, and 29. File
13 is an expected failure, as the syntax check in Step I noticed that the perturbation
introduced a syntax error for this file, making differential fuzzing impossible. Specifically,
the perturbation modified the identifier int r1 to just int 1, which is not allowed. Files
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28 and 29 also resulted in errors, namely Fuzzing Exception and Fuzzing Setup. In one of
which the perturbation introduced almost duplicate identifier names, e.g. my_identifier
and My_identifier, one for a variable and one for a function. While this was not a
problem in C, it resulted in an erroneous Rust translation, where the same identifiers for
a variable and function are not allowed, regardless of the casing strategy. Considering
that LLMVariableImprove only failed in three perfect files, the perturbation should no
longer be considered as a significant non-robust perturbation.

Consequently, GPT-4o-mini only shows meaningful non-robust behavior for LLM-
CodeExtraction. Besides this perturbation, the model proved to be robust, especially
considering that 𝑠 = 3 presents a higher difficulty, as the model has to provide successful
translations for all seeds in a run.

6.3 Summary of Robustness Findings
Employing the robustness evaluation framework detailed in Chapter 4 and using the
baseline from Section 5.2, the analysis of GPT-4o-mini’s behavior under perturbations
suggests the model is generally robust, exhibiting only minor deficits for specific strategies.
Combining the behavior under both deterministic perturbations and stochastic perturbations,
neither a single perturbation target nor a specific perturbation level consistently caused
significant non-robustness. While for the stochastic perturbation there was the impression
that perturbations on instruction or on level IV produce significant robustness deficits,
deeper investigation showed that these outliers were always caused by single strategies,
which drastically affected the aggregated performance of a classification.

Focusing on the Z-Score outlier strategy, the experiments revealed that only five pertur-
bations in total resulted in an absolute Z-Score greater than 3.29 for the most relevant
correctness measure, fuzzing success. File-level examinations showed that Butterfinger-
Inst as well as LLMVariableImprove should not be considered in the assessment. As the
former produced instructions with strongly modified intent and the second one only being
a close outlier, where some failures originated from not fuzzable or not translatable C code,
making a successful translation impossible. Furthermore, file-level analysis suggested that
CodeFormat-Mozilla can be considered a perturbation producing significant non-robust
behavior. However, with a Z-Score of 3.075, the confidence is slightly lower.

This leaves four relevant perturbations: Translation-GER-Comments, CodeFormat-
Mozilla, IdenObfuscator, and LLMCodeExtraction.

Interestingly, translating comments into German significantly improved translation
performance, which unexpectedly indicated non-robust behavior due to the sensitivity to
comment language. This is an interesting phenomenon, and whether this is because of the
benchmark dataset containing major amounts of English code snippets from a German
company, where primarily native German speakers write English code, or if it is a general
characteristic of GPT-4o-mini cannot be judged at this point. Nonetheless, it presents a
robustness deficit and could be investigated in other works.

Additionally, CodeFormat-Mozilla also increased the translation performance of the
code translation system. The reason for that could not be definitely found, but it suggests
that the model might perform better when code follows a consistent style, especially the
style guide of Mozilla.

Besides that, the IdenObfuscator decreased the likelihood of GPT-4o-mini producing
successful translations. That may stem from the perturbation introducing uncommon
identifier names, where GPT-4o-mini did not manage to produce identical function names,
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resulting in a fuzzing failure. However, this perturbation is probably the strategy with the
least real-world relevance, making robustness deficits for this strategy less dramatic.

Lastly, the perturbation that the model showed the strongest robustness deficits is
LLMCodeExtraction. Upon close investigation, there was no definitive factor identifiable,
why the model failed more often under this perturbation. The only noteworthy finding
was that this perturbation increased the number of nested functions, suggesting that the
model may have difficulties handling more complex control flows. This impression could
be investigated by collecting a separate benchmark dataset that specifically involves code
files with high amounts of nested functions.

When excluding the two problematic perturbations Butterfinger-Inst and LLM-
VariableImprove, in total, the code translation system with GPT-4o-mini only showed
robustness deficits in three of 31 strategies. The fact that the framework could be used
to discover these findings underlines that its components are valuable for a robustness
evaluation, which is important when recalling RQ1. However, since the evaluation was
conducted with the feedback loops in Step II, it is not yet clear whether the overall robust
behavior stems from GPT-4o-mini’s characteristic, or if the auto repairing feedback loop
approach takes an influence on the model’s robustness. Consequently, the upcoming chapter
investigates the influence of feedback loops on the robustness.



7 Assessing the Impact of Feedback
Loops on Robustness

The previous chapter discussed the robustness evaluation results of the default code
translation system with GPT-4o-mini. Recall that the code translation system incorporates
multiple auto-repairing feedback loops that may not only have improved the performance of
the model but also affected its robustness. Consequently, this chapter extends that analysis
by specifically investigating whether and how incorporating feedback loops affected the
robustness, directly addressing RQ3: “Does incorporating a feedback loop strategy impact
robustness?”

In this chapter, the thesis systematically evaluates how feedback loops influence robust-
ness against deterministic and stochastic perturbations. Initially, it analyzes the baseline
performance to establish a reference point across the iterations, followed by detailed
examinations of perturbations. The results provide clear insights into the strengths and
limitations of the feedback loop mechanism in maintaining translation robustness.

The entire examination can be conducted on the data of the previous experiments, as
the unique result per feedback iteration is stored. Therefore, this chapter uses the same
experimental setup and also compares the robustness assessment for certain strategies
with and without feedback loops.

7.1 Motivation
The integration of feedback loops within the code translation system aims to improve
translation performance by iteratively refining failing outputs. However, while these feedback
loops may enhance translation success, they could also influence the model’s robustness.
In theory, non-robust behavior could be mitigated by employing iterative feedback loops
that guide the model towards more stable outputs. To get a profound understanding of
the model’s robustness, it is essential to analyze the influence of feedback loops, which
is the motivation behind RQ3. Therefore, this chapter aims to investigate the impact
of feedback loops on the model’s inherent robustness characteristics by analyzing the
translation performance across different iteration steps. These insights are finally used to
answer RQ3 for GPT-4o-mini.

7.2 Feedback Loops on the Baseline Performance
Before analyzing the feedback loops influence on the robustness of the model, it is necessary
to present their influence on the baseline performance, with only Identity.

Figure 7.1 visualizes the influence of the feedback loops on the general baseline perfor-
mance, also showing the amount of nondeterministic variations across iterations.

Without feedback loops, the system clearly has a smaller chance of producing correct
translations, even only considering compilation success, where the system produced reliably
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(a) Baseline performance for 𝑠 = 1. (b) Baseline performance for 𝑠 = 3.

Figure 7.1: Lineplot showing the baseline performance of GPT-4o-mini across the dif-
ferent iterations of the feedback loops. The fill around the lines presents the
nondeterministic noise area with absolute Z-Scores ≤ 3.29.

good results with the feedback loops in Chapter 5.
For both 𝑅𝑃1@5 and 𝑅𝑃3@5, the strongest performance improvement is achieved after

the first feedback iteration (≤ 2). Further iterations only slightly improved fuzzing success
and compilation success, which goes in hand with the previous findings described in
Section 4.3.4. Specifically, the decision to use a max_retries of five was made because
prior testing showed that after some amount of iterations, the model is not able to fix the
errors, leading to unnecessarily many LLM calls. The plot details that when wanting to
save on LLM calls, it could be a good trade-off to choose a smaller max_retries.

However, the plot also demonstrates that the amount of fluctuations can be reduced by
applying more iterations. While this only slightly shows for fuzzing success on 𝑅𝑃1@5, the
other correctness measures present significantly smaller areas around the mean in higher
iterations. Therefore, max_retries of five is beneficial for the robustness evaluation, as
in early iterations it is harder to distinguish between performance changes arising from
nondeterministic noise or changes caused by perturbations.

An additional observation is that for 𝑅𝑃3@5, there appear to be groups in iteration ≤ 2
that yield higher fuzzing success than groups in iteration ≤ 5. In reality, however, this
cannot occur. Recall that the 3.29 Z-Score threshold does not represent actual performance
values, but rather a range defined by scaling the standard deviation. Once an iteration
achieves fuzzing success, the feedback loop terminates, making it impossible to obtain a
worse result in later iterations. However, the situation differs for compilation success. A
successful compilation may still fail during fuzzing, thus triggering another iteration, which
could theoretically lead to compilation failure.

The next section focuses on deterministic and stochastic perturbations to investigate
how feedback iterations influence the translation robustness, thus addressing RQ3 more
directly.
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(a) Barplot for 𝑅𝑃1@5 on fuzzing success in iteration one.

(b) Barplot for 𝑅𝑃1@5 on compilation success in iteration one.

Figure 7.2: Barplots showing the particular deterministic perturbation translation results
with GPT-4o-mini in iteration one utilizing 𝑅𝑃1@5 for fuzzing success and
compilation success. Additionally, the Z-Score for each perturbation is in-
cluded in the bars and the color grades, whether a perturbation produced
a significant change according to the 3.29 outlier rule. Orange presents a
significant performance decrease, and green significant performance increase,
both of which classify as non-robust behavior.

7.3 Deterministic Perturbations
To evaluate the impact of feedback loops on robustness, it is not necessary to aggregate
results for different perturbation targets or perturbation levels. The investigation first
shows the impact on single results per perturbation and later concludes the impact on
robustness.

Figure 7.2 visualizes that in iteration one, there are almost the same perturbations
causing significant deviations as with five iterations. Recall that IdenObfuscator resulted
in a 𝑅𝐶1@5 of 0.085 with feedback loops (see Table 6.4 and Figure 6.1). Without them,
IdenObfuscator resulted in an even more drastic correctness loss, with an 𝑅𝐶1@5 of
0.245 (see Table 7.1). Comparing Figure 7.2b and Figure 6.1b highlights that the feedback
loops managed to elevate compilation success for this perturbation, to only 2% less 𝑅𝑃1@5
than the baseline. Furthermore, the comparison shows that the other compilation success
significant perturbations in iteration five, namely DeMorgan and Translation-KOR-
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Metric Baseline IdenObfuscator Translation-GER-Comments
Fuzzing Success
𝑅𝑃1@5 ↑ 0.689 0.520 0.800
𝑅𝐶1@5 ↓ 0.000 0.245 0.161
Z-Score 0.000 -7.211 4.733
Compilation Success
𝑅𝑃1@5 ↑ 0.882 0.620 0.920
𝑅𝐶1@5 ↓ 0.000 0.297 0.043
Z-Score 0.000 -14.038 2.031

Table 7.1: Overview of the most meaningful deterministic perturbations in iteration one
according to the Z-Score on fuzzing success 𝑠 = 1 and 𝑘 = 5.

Comments, are not significantly different in iteration one. However, the actual amount
of change is higher in iteration one, but since the model also produced more fluctuations
in the first iteration, they were not yet significant outliers with the Z-Score threshold.

Translation-GER-Comments apparently resulted in a quite high 𝑅𝑃1@5 in iteration
one (i.e., 0.8). This is not only 16.1% better than the Sampled Identity baseline in iteration
one, but presents a higher fuzzing success than the baseline after five iterations.

Recall that the prior chapter considered CodeFormat-Mozilla as non-robust behavior
causing perturbation with feedback loops. Without feedback loops, this behavior could not
be seen. However, CodeFormat-Mozilla also did not cross the 3.29 Z-Score threshold
with feedback loops and was classified non-robust with less confidence (see Section 6.1.3).

Overall, translation success is generally worse without feedback loops. However, for
deterministic perturbations, the number of non-robust perturbations appears to be similar
with and without feedback loops.

The impact of feedback loops becomes more evident in Figure 7.3, where perturbations
are grouped based on whether they exceed the 3.29 Z-Score threshold during iteration
one. Specifically, those that were not significant are represented with the blue area and
the blue line describing their mean.

For fuzzing success in Figure 7.3a, the outlying perturbations initially move closer to
the Z-Score region during the first two iterations. Beyond this point, IdenObfuscator
remains unchanged while Translation-GER-Comments continues to improve, clearly
distinguishing both from the baseline. Therefore, the feedback loops reduce the extreme
variations of these perturbations, yet they do not make them fully robust even after five
iterations.

A similar trend is observed for compilation success in Figure 7.3b. Although a substantial
gap exists in iteration one, by iteration three IdenObfuscator closely aligns with the
baseline and then stabilizes without further improvement. In addition, some perturbations
that were initially non-significant do not improve along with the baseline and eventually
fall outside the noise range by iteration five.

Overall, these findings suggest that feedback loops enhance robustness by narrowing
performance variance. However, as the baseline fluctuations decrease with successive
iterations, the loops also expose perturbations that deviate from the baseline. Thus, even
though the total number of non-robust perturbations remains unchanged, the magnitude
of deviations is reduced, which is a result that is particularly significant in practical
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(a) 𝑅𝑃1@5 for fuzzing success across the feed-
back loop iterations.

1 2 3 4 5
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

RP
1@

5 
Co

m
pi

la
tio

n 
Su

cc
es

s

|Z-Score| 3.29
Not Significant (18 Perturbations)
IdenObfuscator
Sampled Identity

(b) 𝑅𝑃1@5 for compilation success across the
feedback loop iterations.

Figure 7.3: Lineplot showing 𝑅𝑃1@5 values for the different iterations under deterministic
perturbations. The perturbations get Z-Score classified in iteration one, and
the two perturbations that were significant outliers in iteration one are
represented with a unique line. In addition, the dashed line shows the sampled
Identity baseline and the area of nondeterministic noise, according to the
absolute Z-Score being ≤ 3.29.

applications.
The stochastic perturbations will show if similar patterns occur and if feedback loops

may reduce deviations while not reducing the number of non-robust perturbations.

7.4 Stochastic Perturbations
To evaluate the impact of feedback loops under the stochastic perturbations, this section also
utilizes the robustness information under the single perturbations at different iterations.

Recall that with at most five iterations, the model showed non-robust behavior for
three strategies, namely LLMCodeExtraction, Butterfinger-Inst, and LLMVari-
ableImprove. After a detailed investigation, Butterfinger-Inst was excluded because
many perturbations modified the intent of the instruction too drastically. In addition,
LLMVariableImprove was excluded because some failures were inevitably caused by
the perturbation, making the amount of performance change not significant enough.

Figure 7.4 displays that there are four significantly outlying perturbations at itera-
tion one. While LLMCodeExtraction and Butterfinger-Inst are among these, LLM-
VariableImprove did not result in enough change to be significant.

Besides these perturbations GPT-4o-mini underperformed for ConstantInsertion and
DeadCodeInsertion. Interestingly, these are similar perturbations, with ConstantInser-
tion adding random constants and DeadCodeInsertion adding more profound dead-code
snippets.

ConstantInsertion already produces drastic loss of 47.6% for compilation success (see
Table 7.2). Further investigation showed that this actually is caused by the Rust code
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(a) Barplot for 𝑅𝑃1@5 on fuzzing success in iteration one.

(b) Barplot for 𝑅𝑃1@5 on compilation success in iteration one.

Figure 7.4: Barplots showing the particular stochastic perturbation translation results
with GPT-4o-mini in iteration one utilizing 𝑅𝑃1@5 for fuzzing success and
compilation success. Additionally, the Z-Score for each perturbation is in-
cluded in the bars and the color grades, whether a perturbation produced
a significant change according to the 3.29 outlier rule. Orange presents a
significant performance decrease, and green significant performance increase,
both of which classify as non-robust behavior.

failing the linting check with clippy. Recall that the compilation success is the combination
of the translation succeeding a compilation and a linting check. As both success values are
mostly similar, the decision was to merge them to simplify the interpretation. However,
for this example, it is beneficial to distinguish between those measures. The reason for
that can be seen in Figure 7.5, where the compiler success is almost as comparable large
as for the Sampled Identity1. However, clippy success is significantly smaller, also resulting
in a smaller fuzzing success. The reason for this behavior is that the ConstantInsertion
regularly introduces a constant PI:=3.14159. Clippy complains about that and wants the
programmer to use Rust’s integrated 𝜋 constant. This is an easy fix for the model, which
explains why the perturbation produces no significant changes in later iterations.

For DeadCodeInsertion it is different. Under this perturbation, the model produces
noticeably less compiler success. However, a clear reason for these failures could not be

1Since clippy success is identical to compiler success, there is no blue bar for the Sampled Identity.
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Metric Baseline ConstantInsertion DeadCodeInsertion LLMCodeExtraction
Fuzzing Success
𝑅𝑃3@5 ↑ 0.595 0.380 0.440 0.420
𝑅𝐶3@5 ↓ 0.000 0.361 0.260 0.294
Z-Score 0.000 -10.009 -7.215 -8.147
Compilation Success
𝑅𝑃3@5 ↑ 0.763 0.400 0.580 0.660
𝑅𝐶3@5 ↓ 0.000 0.476 0.240 0.135
Z-Score 0.000 -12.932 -6.517 -3.666

Table 7.2: Overview of most meaningful stochastic perturbations in iteration one accord-
ing to the Z-Score on fuzzing success and compilation success 𝑠 = 3 and 𝑘 = 5.

Figure 7.5: Stacked correctness results for the non-robust perturbations of iteration
one and iteration five, distinguishing between compiler, clippy, and fuzzing
success.

identified. The compiler output looked quite different among the failing files. Nevertheless,
the compiler errors resulted from multiple issues with types and basic syntax issues, which
are also mostly quite easy to fix with the feedback of the compiler. Therefore, this could
also explain why this perturbation did not cause significant outlying performance in later
iterations.

Consequently, the feedback loops improved the robustness under stochastic perturba-
tion strategies. Since the iterations fixed the deficiencies with ConstantInsertion and
DeadCodeInsertion, the general robustness after all generations is improved, because
fewer perturbations produce outlying performance. However, both improved perturbations
produced failures that are either because of compiling or linting errors, showing that these
failures might be easier to fix with feedback loops. Figure 7.6 illustrates the improvement
progress of the outlying perturbations of iteration one. It gets clear that as soon as the
compilation success is fixed in iteration ≤ 2 (DeadCodeInsertion) or ≤ 3 (ConstantIn-
sertion), also the fuzzing success is elevated into the expected noise area. Yet, as presented
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(a) 𝑅𝑃3@5 for fuzzing success across the feed-
back loop iterations.
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(b) 𝑅𝑃3@5 for compilation success across the
feedback loop iterations.

Figure 7.6: Lineplot showing 𝑅𝑃3@5 values for the different iterations under stochastic
perturbations. The perturbations get Z-Score classified in iteration one, and
four outlying strategies are represented with a unique line. In addition, a
dashed line shows the sampled Identity baseline and the area of nondeter-
ministic noise, according to the absolute Z-Score being ≤ 3.29.

in the previous Chapter 5, the model does not fix the other two perturbations.2
While for Butterfinger-Inst this is negligible, because of the drastic modifications in

the intent of the prompt, it is interesting that the model does not sufficiently translate
LLMCodeExtraction perturbations. Figure 7.5 shows, that under LLMCodeExtrac-
tion the model had a few problems compiling and linting. However, while compilation
success already was significantly better than for DeadCodeInsertion, the model produced
worse fuzzing success. Recalling Chapter 5 with all iterations, the model improved the
compilation success of LLMCodeExtraction to 0.98 and fuzzing success to only 0.6. So
while the iterations significantly improved the likelihood for a successful compilation and
linting, the model did not manage to fix enough fuzzing counterexamples to produce a
robust performance for this perturbation. This suggests that feedback loops are more likely
to improve robustness when the underlying issues are primarily due to compiler or clippy
failures. This can be summarized for RQ3 considering both deterministic and stochastic
perturbations in the upcoming section.

7.5 Discussion in the Context of RQ3
In the following, we discuss these observations in detail, showing why certain errors are
systematically easier (or harder) to correct and what this means for RQ3. The discussed
results present the necessary information to answer RQ3 for GPT-4o-mini.

As the focus is only on the impact on robustness, it is possible to combine the translation

2After iteration ≤ 2 it is observable that some previously not significant perturbation breaks out of the
Z-Score, namely LLMVariableImprove.
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(b) 𝑅𝐶𝑠@5 for compilation success across the
feedback loop iterations.

Figure 7.7: Lineplot showing 𝑅𝐶𝑠@5 values for the different iterations under all pertur-
bations. The perturbations get Z-Score classified in iteration one, and five
outlying strategies are represented with a unique line. In addition, there are
two areas, one for 𝑠 = 1 and one for 𝑠 = 3, according to the absolute Z-Score
being ≤ 3.29.

results for deterministic and stochastic perturbations. While this is not possible with 𝑅𝑃𝑠@𝑘,
because different 𝑠 present different difficulties and are thus hard to compare, it is feasible
with robust change, as this metric presents the relative performance change compared to
the Identity baseline. As long as for 𝑠 = 1 the baseline 𝑅𝑃1@5 is taken, and for 𝑠 = 3,
𝑅𝑃3@5, the relative amount of change can be compared.

Figure 7.7 shows the progress of this metric across the iterations. This figure shows
that the feedback loops influence the robustness of the model. It highlights that with
iterations, the change gets noticeably less drastic. Especially for compilation success, the
model improves the amount of change significantly, except for the negligible Butterfinger-
Inst. However, on fuzzing success, this effect is only strong enough for two perturbations
ConstantInsertion and DeadCodeInsertion. While the other perturbations also yield
less change than in iteration one, they are still definitive outliers. Thus, while feedback
loops notably reduce the severity and frequency of robustness deficits, especially regarding
compilation and linting errors, they rarely eliminate deeper logical, fuzzing-related robust-
ness issues completely. Specifically, the non-robust perturbations that were fixed with the
iterations resulted primarily from issues in compilation and linting.

IdenObfuscator as well as LLMCodeExtraction improved in compilation success,
without leading to a strong enough effect in fuzzing success, therefore highlighting that
feedback loops did not manage to fix most of the non-fuzzable translations.

This can also be seen in Figure 7.8. In the first iteration, the major reason for failure
is compiler errors. This changes significantly in the next iteration, where most compiler
failures can be fixed. Therefore, the total amount of failure decreases, but the amount of
fuzzing failures increases. As some of the previously failing compilations are now accessible
in regard to fuzzing success. However, it shows that even in iteration five, the number of
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Figure 7.8: Detailed analysis of which check fails the translation task for each iteration
of the feedback loops.

fuzzing failures could not be drastically reduced. This supports the finding that feedback
loops might work best on compilation and clippy failures.

This is a reasonable finding, as compiler or clippy outputs directly explain the issue
and its position, which makes it easier for the model to understand the problem and
produce a repaired translation. In case of fuzzing failure, the model only receives the
specific counterexample that failed. Consequently, the model has to refine the logic behind
the translation which is indeed harder than fixing a compiler or linting error [Cod24].

What does this mean for robustness? The feedback loops have a good chance of improving
robustness, especially if robustness deficiencies are a result of compilation failures or clippy
failures. The strategy might also improve some fuzzing related deficiencies, yet the chance
of improvement is much lower. Furthermore, as the translation system also improves the
baseline performance with iterations, a perturbation that causes fuzzing deficiencies cannot
improve the same as the baseline does, making it harder to produce a robust translation for
this perturbation. Lastly, non-robust perturbations that cause improved performance can
only become robust in higher iterations if the amount of improvement per iteration is less
than the baseline’s improvements. From a practical perspective, feedback loops are highly
beneficial as they consistently enhance model performance and notably reduce robustness
deficits, making them valuable for real-world code translation systems.

In conclusion, feedback loops effectively improve the robustness of GPT-4o-mini against
certain perturbations, particularly those causing explicit compilation or linting issues.
However, their ability to handle more complex fuzzing failures remains limited, which
could be a consideration for future improvements.



8 Exploring the Correlation between
Semantic Similarity and Robustness

Prior chapters examined the robustness of GPT-4o-mini under various perturbations, with
and without feedback loop iterations. These investigations highlighted certain perturbations
that tend to produce non-robust behavior and offered preliminary insights into why specific
perturbations might lead to larger performance changes. However, the magnitude of change
itself has not yet been incorporated in these interpretations.

8.1 Motivation in Measuring Similarity
Intuitively, one might expect that perturbations that substantially modify the Identity
would be more likely to trigger non-robust behavior. Whether this intuition holds true,
however, has remained an open question in this thesis and also in related work. To
capture such variations, this chapter employs cosine similarity on embedding vectors as
an indicator for semantic similarity. These embedding vectors are produced by OpenAI’s
ada-002 embedding model [Ope22c].

This leads directly to RQ4, investigating whether lower semantic similarity correlates
with greater robustness deficits. By leveraging the findings from previous experiments on
deterministic and stochastic perturbations, the subsequent sections analyze to what extent
embedding-based similarity can predict or explain non-robust outcomes.

With the cosine similarity on embedding vectors, the framework can explore whether
files that diverge more from the original trigger stronger performance deviations. The
cosine similarity approach is practical because modern language models typically produce
embeddings that capture various semantic features of the text. Rather than focusing on
purely lexical distances, this approach checks if the model itself encodes two code snippets
as similar.

If the results signal a clear correlation between cosine similarity and translation success,
this would present a strategy for predicting robustness for certain perturbations. Further-
more, this would make it possible to filter out perturbations that lead to overly drastic
changes, as they might bias the robustness evaluation.

8.2 Similarity Baseline
To get a better understanding of the values produced by OpenAPI’s ada-002, a baseline
distribution was created. As explained in Section 4.4.4, this distribution is derived from
pairwise comparisons of all 50 C files in the benchmark dataset. Prior UMAP visualizations
and Figure 5.1 indicated that the files mostly differ noticeably from one another. As a
result, the computed similarities capture how the embedding model interprets semantically
different files that share only the general property of being C code.
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Figure 8.1: KDE density plot [Węg18] of the cosine similarity distribution among pairwise
comparisons of the benchmark dataset with colored percentile intervals. The
red dashed line represents the mean, the orange the three sigma rule (Z>3),
and the magenta dashed line marks the Z-Score outlier threshold (Z > 3.29).

Figure 8.1 visualizes the calculated distribution of cosine similarity values. It shows that
not a single comparison falls below 0.65. It appears that the model consistently classifies all
files as at least somewhat similar, presumably because they share common programming
elements. Considering that most files are semantically different, the value range of minus
one and one is not accurate for predicting that a model might show non-robust behavior,
and justifies why such a baseline assessment is necessary.

As detailed in Section 4.4.4, to specify similar perturbations, the three sigma rule can be
used. Employing this rule one the presented examples in Section 4.4.4 would classify the
bitwise sum in Listing 4.3 and the instruction that modified Rust to Tyst as semantically
too different. This demonstrates that the proposed strategy is able to classify the examples
as desired and sparks the question of whether we can observe a similar behavior for the
significantly non-robust perturbations.

8.3 Deterministic Perturbations
To address RQ4, we compute the cosine similarity between each deterministic perturbation
and the Identity. Figure 8.2 displays these similarities both with and without feedback
loops. Perturbations left of the black line are considered less meaningful, whereas those to
the right meet the similarity threshold. This goes back to the initial motivation behind this
component. Perturbations that are highly different from the Identity are positioned on
the left side, and subsequently considered less meaningful. Each side is further divided into
robust and non-robust regions using the Z-Score threshold of 3.29 on the Sampled Identity
𝑅𝑃1@5 distribution. The yellow areas present outliers that produced higher success than
the expected noise, while red regions indicate significantly lower fuzzing success. In this
way, the plot provides a comprehensive robustness evaluation by integrating all previously
discussed information with similarity scores.
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Figure 8.2: Cosine Similarity and fuzzing success of deterministic code perturbations.
Divided into perturbations with high and low similarity, and robust or non-
robust behavior.

A model with multiple perturbations in the dark red area (bottom right) is deemed
non-robust, as it produces significantly worse results on similar inputs. Likewise, numerous
perturbations in the dark yellow area signal inconsistent performance, although unexpect-
edly strong outcomes here are less concerning in practice. An ideal robust model would
exhibit perturbations exclusively in the green area. In addition, robust performance on
the right is anticipated, while robust performance on the left is even more noteworthy,
because of the lower similarity to the Identity. Finally, if a model fails to achieve robust
results for low-similarity (left-side) perturbations, this should not overly penalize its overall
robustness evaluation.

Focusing on the visualized information in Figure 8.2 confirms the previous findings that
GPT-4o-mini primarily produces robust results and that feedback loops can reduce the
impact of non-robust deficits (IdenObfuscator and Translation-GER-Comments
move closer to the baseline with feedback loops). Furthermore, the plot details that the
majority of perturbations produced similar files and subsequently adhered to the semantic
similarity requirement. However, the ABC perturbation is on the left side of the three
sigma baseline, noting less similarity, yet the model managed to produce a robust result.
The UMAP in Figure 5.2 already suggested that ABC is the deterministic perturbation
with the most amount of change, yet the expectation was that it was drawn to other
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files with equivalent identifier names after perturbation. The cosine similarity plot shows
that this was not the only reason, because for the embedding model, the changes of this
perturbation were the strongest for all deterministic perturbations.

Depending on the view, this could show boundaries of the not-so-optimized cosine
similarity approach. There is no ground-truth on what should be considered similar and
what should not. Yet the expectation would have been that the model interprets two files
only differing in identifier names as similar. Clearly, one could use another strategy to
draw the cosine similarity baseline threshold, e.g, by orienting on the 95th percentile at
0.89 (see Figure 8.1). However, the ABC perturbation would still significantly show the
lowest similarity to the Identity. Nonetheless, the cosine similarity can be considered
as the model’s own “opinion” on the similarity of perturbations. Since embeddings are
fundamental to how LLMs represent and process information, the cosine similarity might
better capture the model’s perceived change compared to human annotations. This leads
to the interpretation of the correlation between cosine similarity and robustness results.

With ABC being the least similar and yet a robust perturbation, this already presents
that the similarity alone is not the driving factor for worse robustness. Furthermore,
the most difficult perturbation is IdenObfuscator, yet the cosine similarity does not
suggest that perturbations produced overly different files. The interpretation in Section 6.1
concluded that the difficulty of this perturbation may be caused by the unusual identifier
names that could mislead the embeddings. Comparing ABC and IdenObfuscator, this
hypothesis can not be confirmed, as ABC misled the embeddings more and still resulted
in robust translation success.

Focusing on perturbations with a cosine similarity very close to 1.0 might highlight
that the model’s performance is more clustered around the Sampled Identity, and with
decreasing similarity, the performance begins to spread. This is especially visible without
the feedback loops. Yet there are also exceptions like the DeMorgan perturbation, which
is suggested to be very similar, but almost negatively crosses the robustness threshold. To
give a concise assessment of the correlation, the Pearson correlation coefficient [SBS18] is
used. As robustness shows by both performance decrease and performance increase, the
𝑅𝐶1@5 metric is specifically chosen for the calculation. The Pearson correlation coefficient
is a well-established correlation metric whose value ranges are commonly mapped to
textual descriptions. While Schober et al. [SBS18] point out that judging correlation
only with fixed-range correlation intervals is not optimal, the thesis uses their table that
classifies correlation values into textual descriptions. The combination of the visual analysis
and the coefficient gives a clearer picture of the correlation and mitigates the concern of
misinterpreting the coefficient.

Without the feedback loops, the coefficient between cosine similarity and 𝑅𝐶15@ is
−0.0103, and with feedback loops it is 0.0193. According to Schober et al. [SBS18], this
presents weak to no correlation. So heuristically, there is no noteworthy correlation between
similarity and robustness for the deterministic perturbations on code.

This may again suggest that robustness to perturbations is highly individual, but could
also reflect that the used similarity measure is not usable for quantifying the similarity
between code files.

Figure 8.3 shows the same plot for perturbations on the instruction. Recall that for
instructions, there is no particular baseline, and the values of the code comparison are used.
The figure details that the translation into German or Korean presents a significant change.
This suggests that the cosine similarity baseline on code is not the optimal approach for
deciding whether a perturbation on an instruction is meaningful or not. This might be



8. Exploring the Correlation between Semantic Similarity and Robustness 109

0.88 0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

RP
1@

5 
Fu

zz
in

g 
Su

cc
es

s

Iteration 1

0.88 0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

Iteration 5

Robust High Similarity

Robust Low Similarity

Not Robust High Similarity

Not Robust Low Similarity

3  Baseline Cosine Similarity

Sampled Identity

Backtranslation-Inst

Translation-GER-Inst

Translation-KOR-Inst

Identity

Figure 8.3: Cosine Similarity and fuzzing success of deterministic instruction perturba-
tions. Divided into perturbations with high and low similarity, and robust or
non-robust behavior.

caused by the fact that the average token count per code file is significantly larger than
for the instruction. The Identity instruction: “Translate the following C code to Rust.
Keep all identifiers exactly as they are.” has a token count of 16. It seems reasonable
that changing or adding some tokens might stronger effect on the cosine similarity of this
sentence.

While the classification of meaningful perturbations can be refined for instructions, the
cosine similarity results can be used for the correlation coefficient. Without feedback loops,
the model shows a correlation coefficient of −0.672 (moderate) and with −0.306 (weak). So,
for perturbations on instruction, such correlation could also not clearly be found. However,
the correlation might suggest that the feedback loops can improve robustness issues for
less similar instruction perturbations. However, the experiments only involved three data
points. This makes such correlation analysis less trustworthy.

In addition, it is important to note that correlating translation success with similarity
has to be taken with caution, especially with 𝑠 = 1, as minor fluctuations are not necessarily
a sign of robustness characteristic, but could just be nondeterministic noise. However,
when considering the confidently classified non-robust perturbations IdenObfuscator
and Translation-GER-Comments, there is also no definitive correlation between similarity.
Furthermore, it might also be noteworthy that there is also no clear correlation between
compilation success and cosine similarity. The plots and correlation values are presented
in Appendix A.5.1.

The experiment on stochastic perturbations will show if similar findings can be observed
for stochastic perturbations and the less fluctuating robust pass with 𝑠 = 3.

8.4 Stochastic Perturbations
Figure 8.4 details the correlation between cosine similarity and fuzzing success for stochastic
perturbations with 𝑅𝑃3@5. Since each stochastic perturbation involves three different
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Tokens DeadCodeInsertion ConstantInsertion Identity
Mean per File 578.47 542.68 454.54
Total per Dataset 115693 108535 90908

Table 8.1: Comparison of token counts for less similar perturbations.
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Figure 8.4: Cosine Similarity and fuzzing success of stochastic code perturbations. Divided
into perturbations with high and low similarity, and robust or non-robust
behavior.

variations (𝑠 = 3), there can be three different cosine similarity values. However, since
𝑅𝑃3@𝑘 uses the worst-case approach, the decision was to show the variation with the
worst cosine similarity. As a translation must also be correct for the least similar variant,
showing the least similar and presumably hardest variation allows a better interpretation
in regard to correlation.

Comparing the plot without feedback loops on the left with the one with feedback
loops highlights the previously discussed findings, that the feedback loops can indeed
improve robustness, especially for the perturbations that fail because of compilation
success (DeadCodeInsertion and ConstantInsertion).

In addition, the embeddings suggest that DeadCodeInsertion is the least similar
stochastic perturbation on code, followed by ConstantInsertion. Since DeadCodeIn-
sertion and ConstantInsertion cross the three sigma threshold, they can be deemed as
less meaningful for the evaluation. However, they are rather close to the threshold and
therefore not classified with high confidence. Nevertheless, it seems reasonable that the
embedding for DeadCodeInsertion and ConstantInsertion present larger change, as
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Figure 8.5: Cosine Similarity and fuzzing success of stochastic instruction perturbations.
Divided into perturbations with high and low similarity, and robust or non-
robust behavior.

they drastically increase the file length, by adding code snippets (see Table 8.1). The
UMAP in Figure 5.3 already showed that DeadCodeInsertion might have produced a
significant change. Yet, the interpretation was similar to ABC, and it was thought that
this is caused by multiple perturbed files having similar code snippets and subsequently
higher similarity. Figure 8.4 and Table 8.1 details, that this was not the only reason.

In iteration one, the figure shows that perturbations with very high similarities show less
spread in the fuzzing success, as those that have less similarity. With feedback loops, this
pattern vanishes, as the originally failing DeadCodeInsertion and ConstantInsertion
translations get fixed and other perturbations move closer to the baseline. The Pearson
correlation coefficient [SBS18] on 𝑅𝐶3@5 and cosine similarity confirms this finding.
Without feedback loops there is a correlation of −0.714 (strong), and with 0.023 (weak).
Consequently, this is the same behavior one could find for deterministic perturbations on
instructions. However, under stochastic perturbations, this correlation is even higher. In
addition, compilation success shows similar correlation values (see Appendix A.5.1).

Besides that, it is interesting that the most difficult perturbation with feedback loops
LLMCodeExtraction is considered quite similar. As shown earlier, the perturbation
increases complexity by adding nested function calls. However, this does not strongly
affect the cosine similarity. This might as well show that cosine similarity is not the best
approach to measure perturbation similarity on code.

Figure 8.5 visualizes the cosine similarity and fuzzing success for stochastic perturbations
on instructions. This highlights again that the three-sigma baseline on the code files might
not be the best way for classifying the relevance of instruction perturbations. Furthermore,
it confirms once more that the cosine similarity is more sensitive when the Identity
involves only a small number of tokens. As there are only two data points, the correlation
coefficient is not that meaningful. It suggests a correlation of 1.0 for both iterations one and
≤ 5. This is clearly because the less similar Concretizer has less 𝑅𝐶3@5 than the more
similar Butterfinger-Inst. While the correlation is not meaningful, it is still surprising
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that the Concretizer presented more change to the embedding. The suggestion would
have been that Butterfinger-Inst shows clearly that it is highly dissimilar, as it tends
to modify the valuable target language part of the instruction. Since Concretizer only
appends text and Butterfinger only modifies existing text, this leaves the impression
that the length difference also has a great impact on cosine similarity, even when the
added text adheres to the original semantics.

Overall, the results on stochastic perturbation suggest that the correlation between
cosine similarity and translation success with feedback loops is not that prominent, as one
would have expected. However, the perturbations on code leave room for the interpretation
that feedback loops positively influence non-robustness for less similar inputs. There was
a strong correlation between less similarity and higher 𝑅𝐶3@5. However, this strong
correlation is primarily driven by the two failing perturbations DeadCodeInsertion
and ConstantInsertion, which other interpretations showed might be easily fixable,
because they are a result of compilation or linting errors. Excluding these perturbations,
the correlation is weak without (−0.177) and nonexistent with feedback loops (−0.005).

8.5 Interpretation for RQ4
This section returns to RQ4: “What is the correlation between semantic similarity and
perturbation-based robustness?”

The initial expectation was that more similar inputs, showing in higher cosine similarity,
would yield fewer robustness issues. This led to the idea that cosine similarity might be
leveraged as an a priori predictor for the difficulty and relevance of certain perturbations.

The sections of this chapter analyzed this correlation between cosine similarity and
translation success for deterministic and stochastic perturbations. Both deterministic
and stochastic perturbations revealed that the correlation between cosine similarity and
fuzzing success (or compilation success) was either very weak or nonexistent when feedback
loops were applied. Certain subsets like stochastic perturbations on code, or deterministic
perturbations on instructions, suggested that feedback loops might impact this correlation.
Without feedback loops, these subsets exhibited moderate to strong correlation, indicating
that higher similarity tends to reduce the deviation in translation success compared to the
Sampled Identity baseline. This effect vanished when feedback loops were employed. This
might suggest that feedback loops can act as a fallback to mitigate initial errors, which
makes any direct correlation between similarity and robustness less apparent.

However, it was noted that the strong correlation was mostly due to the two easily
fixable perturbations DeadCodeInsertion and ConstantInsertion. Thus, for a better
assessment, we can combine the data points of both deterministic and stochastic pertur-
bations on all targets. Calculating the Pearson correlation coefficient for this set only
yields a moderate correlation of −0.486 without feedback loops and a weak correlation with
feedback loops −0.064. So feedback loops still reduce the correlation, yet the overall value
with all data points is less significant. Considering that the model involves nondeterministic
fluctuations, the correlation becomes even more insignificant.

Consequently, contrary to the initial hypothesis, a clear linear relationship between
embedding-based similarity and translation robustness could not be observed. One could
think that this could be caused by comparing aggregated cosine similarity and aggregated
𝑅𝐶𝑠@5 values for the files of the dataset, which could flatten certain correlations. However,
computing the correlation coefficient between the files cosine similarities with their 𝑅𝐶1@5
values yielded even less correlation.
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Therefore, there are several potential reasons why no clear correlation could be found.
The first reason could lie in the impact of token-level similarity versus global similarity.
Small changes to critical tokens (e.g., modifying the target language “Rust”) can result
in disproportionately large performance drops, whereas identifier renaming might have
negligible effects (ABC). This indicates that the translation process may be more dependent
on certain keywords and is highly individual to the actual task than the overall textual
similarity measured by embeddings. Consequently, large textual modifications might not
affect translation success, while smaller, but pivotal token perturbations could drastically
impact translation outputs. The significance of pivotal tokens for LLM performance is also
highlighted in [Abd+24].

Another reason for not finding clear correlations could be limitations of the embedding
model. According to OpenAI [Ope22c], the chosen model ada-002 was optimized to unify
multiple tasks like text search, text similarity, and code search into a single embedding
model. Although it incorporates semantic code-search tasks, it may not fully capture the
syntactic, structural, or even logical aspects of source code. Lastly, the nondeterministic
nature of LLMs leads to the model producing fluctuating outputs for exactly similar inputs,
which makes it harder to show a definitive correlation.

Combining these factors, the conclusion is that higher cosine similarity alone does not
reliably predict higher robustness. While embedding-based methods provide interesting
insights into overall text similarity, further research using code-specific approaches may be
better to more accurately determine which perturbations truly represent challenging shifts
in semantics. However, it may also just be the fact that the translation robustness of a model
is not predictable, as there are only minor factors or randomness that determine translation
success. Hence, RQ4 must be answered negatively: With the proposed methodology, there
does not seem to be a clear correlation between cosine similarity and robustness.
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9 Extending the Analysis to Multiple
Models

The previous chapters provided a comprehensive robustness evaluation for GPT-4o-
mini. With the proposed framework, the interpretations showed that this model itself is
quite robust, with only a few Perturbations that caused significant performance changes.
Moreover, it could be shown that the feedback loops can improve, but do not ensure
robustness. Lastly, no clear correlation between cosine similarity of perturbations and
robustness could be observed for all scenarios. This chapter aims to clarify whether all
these findings are consistent among other LLMs. Specifically, the chapter aims to bring
evidence for discussing RQ5: “Are robustness results consistent using different LLMs?”

To answer this question, the thesis takes the same approach as it did for GPT-4o-mini.
That means it begins by defining a baseline and analyzing the performance differences
under perturbations. While for GPT-4o-mini the experiments involved deterministic and
stochastic perturbations, the upcoming models (i.e., GPT-3.5-turbo, Phi-4, Qwen2.5-Coder)
are only analyzed under deterministic perturbations. This is because of higher costs in
price and runtime, explained in Section 5.1. Furthermore, to reduce the complexity of the
chapter, the focus is mostly only on the more important fuzzing success. After discussing
the robustness with feedback loops, the chapter compares results without feedback loops to
validate whether the approach always leads to increased robustness. Lastly, the correlation
between cosine similarity and robustness for all LLMs is investigated.

9.1 Motivation
With the previous analysis, it could be shown that the proposed framework enables a
comprehensive robustness evaluation. This led to certain conclusions for the evaluated
GPT-4o-mini. By performing an evaluation on other models, it can be examined whether
the framework can be easily utilized to evaluate the robustness of other LLMs. This
provides more information to the main RQ: “What methodologies and components should
be integrated into a comprehensive evaluation framework to assess the robustness of an
LLM-based code translation system?”

Furthermore, by performing an evaluation on other models, the thesis examines whether
prior conclusions about robustness can be transferred to other LLMs or whether they are
individual to GPT-4o-mini. This examination presents the evidence for answering RQ5.

To measure the robustness, it is necessary to understand the baseline performance of
the different LLMs.

9.2 Baseline and Noise across Different LLMs
The baseline assessment follows multiple motivations in this chapter. At first, it should
compare the general translation performance for the different LLMs, to show which model
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Figure 9.1: 𝑅𝑃1@𝑘 for different 𝑘 values of all 20 Identity runs.

produced the best results for the task of translating C to Rust.
The second motivation is to get insights into the expected baseline for the robustness

assessment. That means that the previous strategy is applied, where all different groups of
five are built, to get a mean 𝑅𝑃1@5 for 𝑛 = 5. This enables the assessment of nondeter-
ministic noise to later decide what changes are caused by non-robustness and what could
be nondeterministic noise, which is the third motivation of this section.

To keep coherence and reduce complexity, the baseline analysis is presented on the code
translation system with feedback loops. This makes the results more comparable to those
that were presented in Section 5.2.3.

Recall that the baseline performance for GPT-4o-mini was assessed by incorporating
𝑛 = 20 runs. These runs resulted from the experiments performing five runs per 𝑠 on
deterministic (𝑠 = 1) and stochastic (𝑠 = 3) perturbations, which in combination yielded
twenty runs for the Identity.

However, since the other models are only evaluated under deterministic strategies there
were fifteen extra runs only on Identity, to create a comparable baseline with 20 runs1.

9.2.1 Translation Performance Comparison
Figure 9.1 illustrates the fuzzing success for all models over the 𝑛 = 20 runs with different 𝑘.
This plot is different from the previous baseline assessment, which focused on the Sampled
Identity 𝑅𝑃1@5 performance for all possible groups of five that can be built out of these
twenty runs. This plot directly incorporates all runs into the calculation of the 𝑅𝑃1@𝑘

metric.
The figure highlights multiple interesting points. First, it suggests that the selection

1For Qwen2.5-Coder it took nineteen extra runs, as there is only one run under deterministic perturbations.
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Figure 9.2: Venn diagram [Ven80] of the solved files over twenty runs for the different
models. The diagram includes a binary encoding, specifying what values
belong to what combination of models, to simplify interpretability. The
exact order of the binary encoding is GPT-4o-mini, GPT-3.5-turbo, Phi-4,
Qwen2.5-Coder.

of the best model depends on how many runs one is willing to perform. For one-shot
results, the coding model Qwen2.5-Coder seems to be the best choice, directly followed by
GPT-4o-mini. Increasing the number of runs shows a steep incline for the performance of
Phi-4, which performs best for the range of four to eleven runs, where it then begins to
saturate. Such saturation can also be observed for Qwen2.5-Coder, yet, however, with a
stagnation at worse performance than Phi-4 and GPT-3.5-turbo. Neither GPT-4o-mini
nor GPT-3.5-turbo shows a saturation in twenty runs, which leads to GPT-3.5-turbo
showing best performance amongst all models, when there are more than thirteen runs.
As GPT-4o-mini shows a small slope in early runs, it generally performs worse than other
models, but the figure suggests that with more than twenty runs, this could change.

The GPT models not saturating suggests that these models can produce new solutions
also after various runs, which could be interpreted as a sign of creativity. Moreover, the
figure suggests that the expected translation performance correlates with the model’s
parameter size. GPT-4o-mini as the smallest model, overall produced the worst results,
and GPT-3.5-turbo, most likely being the largest model, produced the best results.

The Venn diagram [Ven80] in Figure 9.2 shows the number of solved files over all twenty
runs of the four different models. It highlights that GPT-3.5-turbo was able to successfully
translate two files, which no other model managed to translate successfully (0100 in
the Figure). However, the plot also points out that with GPT-3.5-turbo being the best
model, it still misses out on two files that could be translated by all other models (1011
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𝑅𝑃1@5 GPT-4o-mini GPT-3.5-turbo Phi-4 Qwen2.5-Coder
Compilation Success 1.0 ± 0.001 0.999 ± 0.004 0.979 ± 0.005 0.978 ± 0.006
Fuzzing Success 0.787 ± 0.017 0.825 ± 0.034 0.836 ± 0.034 0.818 ± 0.019

Table 9.1: Baseline mean ± standard deviation translation success for all evaluated models
among all files utilizing RP𝑠@k for compilation success and fuzzing success.

in the Figure).
This small digression shows that choosing the right model can influence the overall

success, and that the choice of the right model depends on preliminary requirements
like price, hardware capabilities, and the acceptable number of experiment runs. The
performance under deterministic perturbations will show if robustness will also be a factor,
which impacts the model choice.

9.2.2 Baseline Performance
To measure the robustness, we need the relevant baseline performance that is used to
compare the performance under deterministic perturbations. Specifically, this describes the
mean 𝑅𝑃1@5 among the

(20
5
)

groups that could be drawn out of the twenty runs. Recall
that for Qwen2.5-Coder, there is only one run under deterministic perturbations, which is
reasoned in Section 5.1. That means the relevant baseline for Qwen2.5-Coder has to be
assessed separately and requires calculating the mean 𝑅𝑃1@1 of all

(20
1
)

groups. However,
to have comparable baseline results, this section presents the baseline with

(20
5
)

and details
Qwen2.5-Coder’s unique one-shot baseline for the robustness assessment at the end of the
next section.

Table 9.1 details the values for the different models. Note that the values in Figure 9.1
at 𝑘 = 5 are very similar to the values in the table. One could argue to always work with
𝑘 = 5 and 𝑛 = 20 for the baseline. However, the sampling method comes with the advantage
of producing value distribution, which ultimately allows to define the Z-Score robustness
threshold.

Figure 9.3 visualizes the fuzzing success of the different models for the specific files. This
figure clearly details why GPT-3.5-turbo performed best. The model was able to successfully
translate the incorrect files of GPT-4o-mini (i.e., 18, 23, 43, and 46). Furthermore, it
highlights that the other models tend to produce higher values for the variational files of
GPT-4o-mini, which also reflects in the 𝑅𝑃1@5 value. Lastly, the figure shows that there
are still files that stay incorrect. Specifically, the largest files 48 and 49 were not successfully
translated once. Similarly, the surprisingly failing files 36 and 2 can not be translated by
one of the models. Which is an interesting finding for the general performance that one
could expect when working with LLM based code translation. Specifically, it seems that
using different models can improve performance, because not all models can successfully
translate all files, which is also visible in Figure 9.2. However, there are tasks that are
difficult for all models, so using a few good models will not necessarily lead to a successful
translation for all files.

While these aspects are interesting, the general focus is on the robustness. For this,
the next section presents the fluctuations of the baseline, which enables the definition of
thresholds that will later be used to distinguish non-robust behavior and nondeterministic
noise.
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Figure 9.3: Comparing 𝑅𝑃1@5 at fuzzing success per file for all models.

9.2.3 Noise Analysis of the Different Models
To differentiate between expectable noise and non-robust behavior, the value distribution
of 𝑅𝑃1@5 is being analyzed. Figure 9.4 illustrates the distinct model fluctuations. The plot
details what could already be seen in Table 9.1, namely that GPT-3.5-turbo and Phi-4
produce a higher standard deviation, which results in a larger distance between the Z-Score
thresholds. Additionally, the distribution shows that the values for GPT-3.5-turbo and
Phi-4 are not symmetrically distributed. Both the form of the distribution and the high
standard deviation negatively influence the trustworthiness of the Z-Score as a predictor
for outliers.

For instance, the performance distribution for GPT-3.5-turbo is notably bimodal, with
peaks occurring at approximately 0.8 and 0.87. Such bimodality produces a larger standard
deviation, causing the calculated Z-Scores to extend significantly beyond the observed
maximum and minimum 𝑅𝑃1@5 values. As a consequence, even deviations corresponding
to Z-Scores lower than the threshold of 3.29 may signal non-robust behavior. Specifically,
the distribution reveals that the maximum 𝑅𝑃1@5 value aligns with a Z-Score of 1.64,
while the minimum is observed at a Z-Score of approximately 1.93. This observation
highlights that, for GPT-3.5-turbo, the classical Z-Score threshold may overestimate the
amount of fluctuations, potentially classifying non-robust behavior as expectable noise.

In contrast, Phi-4 exhibits a negatively skewed distribution, which causes the high
standard deviation. The distribution shows a high likelihood of achieving performance
values near the maximum 𝑅𝑃1@5 0.86, which has the Z-Score 0.72. Moreover, the negative
Z-Score threshold of −3.29 corresponds to an 𝑅𝑃1@5 value of 0.72, yet the minimum
performance is at 0.66 with an associated Z-Score of −5.18. This finding suggests that even
minor improvements above the maximum (𝑍 = 0.72) might be interpreted as non-robust,
whereas performance below the typical negative threshold might still be normal noise,
although with a relatively low probability. These discrepancies show that Z-Scores as
predictors for outliers are heavily dependent on the underlying distribution characteristics,
which seemingly vary significantly between models.

The implications of these findings are crucial when evaluating the models’ robust-
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Figure 9.4: Violin plot [Ha98] showing the distribution of the
(20

5
)
𝑅𝑃1@5 values for

fuzzing success for the specific LLMs. In addition, the positive (orange) and
negative (red) Z-Score thresholds and the distance between those (blue) are
included.

ness under perturbations. They highlight that the application of the universal Z-Score
threshold is not useful when the baseline performance distributions are asymmetric or
multimodal. Instead, it is important to first assess the specific properties of each model’s
performance distribution before employing Z-Scores to distinguish between expected noise
and meaningful non-robust behavior.
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Figure 9.6: GPT-3.5-turbo’s fuzzing-success under deterministic perturbations. The max-
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As mentioned before, Qwen2.5-Coder ’s baseline has to be analyzed for 𝑛 = 1, 𝑘 = 1
and is visualized in Figure 9.5. This figure demonstrates that even with only one run, the
baseline performance is relatively good, which is also shown in Figure 9.1, where Qwen2.5-
Coder proved to be the best model for one-shot experiments. The distance between
lower and upper Z-Score threshold is 0.152 and according to the

(20
1
)

distribution slightly
overestimates the fluctuations. Knowing that the robustness evaluation is conducted on a
small sample size with only one run, such an overestimation might be desired to prevent
false positive non-robustness claims. However, this should be kept in mind when evaluating
the robustness.

9.3 Robustness under Deterministic Perturbations
With the information about the baseline performance for identical inputs, we can now
investigate whether the deterministic perturbations cause significant outlying performance,
which can be classified as non-robust behavior. The examinations for GPT-4o-mini revealed
overall robust performance for the deterministic perturbations, with only a significant
deviation under IdenObfuscator and Translation-GER-Comments.

The following examination investigates whether these findings generalize across different
models and if the same perturbation strategies cause comparable robustness issues.

9.3.1 Robustness of GPT-3.5-turbo
Figure 9.6 demonstrates the robustness of GPT-3.5-turbo under deterministic perturbations
with feedback loops. According to the 3.29 Z-Score rule, no perturbation caused significant
performance changes. However, since the baseline distribution of GPT-3.5-turbo slightly
overestimates the fluctuations, the maximum and minimum values are used as a reference.
Most perturbations stay within this range, which prevents a clear classification of non-
robust behavior

Recall that the baseline distribution of GPT-3.5-turbo shows a clear peak with a fast
drop-off for higher values. This indicates that it is very unlikely to obtain performance
scores above this peak. In this context, the CamelCase perturbation slightly exceeds the
baseline’s maximum, and is therefore considered non-robust. Although the performance
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Figure 9.7: Phi-4’s fuzzing-success under deterministic perturbations. The baseline’s
maximum and the negative Z-Score threshold −3.29 are used to classify
non-robust behavior.

increase is only small, this rare event suggests a possible sensitivity of the model. Neverthe-
less, since the performance improvement is small, the confidence in it being a systematic
sensitivity instead of a highly fortunate run is not very high.

Additionally, it is worth mentioning that IdenObfuscator produced the lowest perfor-
mance, which is similar to the results observed for GPT-4o-mini. Although the drop in
performance is not large enough to confidently classify it as non-robust, the consistent
behavior suggests that this perturbation has characteristics that negatively affect model
performance.

Overall, GPT-3.5-turbo shows a robust performance, with not a single deterministic
perturbation causing really significant performance changes to the empirically examined
baseline performance.

9.3.2 Robustness of Phi-4
Figure 9.7 presents the performance of Phi-4 under deterministic perturbations. The
baseline values of Phi-4 showed a negatively skewed distribution with a clear peak
and a fast drop-off, similar to GPT-3.5-turbo. Given this, performance exceeding the
baseline maximum is very unlikely. Nonetheless, Phi-4 achieves performance values beyond
this maximum for the paraphrasing perturbations of comments (i.e., Backtranslation,
Translation-KOR, and Translation-GER). Although the improvement is very small,
the fact that all three perturbations produce such an effect suggests that Phi-4 is sensitive
to the natural language parts of code and may suggest that varying code explanations can
improve its performance.

In addition, IdenObfuscator shows noticeably lower performance. Although neither
the Z-Score nor the baseline’s minimum indicates clear non-robust behavior, previous
experiments support that IdenObfuscator represents a challenging perturbation for
LLMs overall.

In general, Phi-4 demonstrates primarily robust behavior. It only exhibits slight sensi-
tivity to perturbations in code comments and confirms the difficulty posed by IdenOb-
fuscator.
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Figure 9.8: Qwen2.5-Coder’s fuzzing-success under deterministic perturbations in one
run 𝑛 = 1, 𝑘 = 1. The common Z-Score threshold 3.29 is used to classify
non-robust behavior.

9.3.3 Robustness of Qwen2.5-Coder
Figure 9.8 presents Qwen-Coder’s fuzzing success under one run with deterministic pertur-
bations. Again, one can observe a robust behavior. According to the Z-Score threshold, only
DeMorgan caused a significantly outlying performance to the distribution. Remember
that QwenCoder’s Z-Score distance also exceeded the maximum and minimum values
of the distribution. Considering the maximum and minimum values as reference, would
additionally show Translation-GER-Inst and IdenObfuscator as outliers. As the
amount of performance increase is very small for the German instructions and the results
are only based on one single run, it remains ambiguous whether Qwen2.5-Coder is sensitive
to this perturbation, or if this is only a fortunate run. However, IdenObfuscator proves
again to cause a meaningful performance drop, adhering to the previous findings.

DeMorgan consistently exhibited slightly lower performance compared to the baseline
of the other models, although it did not fall below the robustness thresholds. Therefore, it
remained unclear whether this difference was noise or an indication of a genuine robustness
issue. Qwen2.5-Coder is the only model where this perturbation led to a highly significant
performance drop. Since it is also the only model finetuned for code generation, this result
may suggest that the model struggles with the unconventional logical constructs introduced
by DeMorgan. However, as this observation is only based on a single run, an increase of
𝑛 and 𝑘 might reveal a different robustness profile.

Overall, Qwen2.5-Coder also demonstrates robust behavior, showing only a slight
weakness with the problematic IdenObfuscator and a higher sensitivity to DeMorgan
perturbations.

9.3.4 Perturbation Robustness for Different Models
The detailed analysis indicates that all of the models are mostly robust against deterministic
perturbations. However, there are observable differences among the models. While GPT-
3.5-turbo exhibits increased sensitivity to the use of CamelCase, both GPT-4o-mini
and Phi-4 appear to positively deviate from perturbations in the comments. Notably, all
models experience a strong performance drop under the IdenObfuscator, suggesting
that this specific perturbation poses substantial challenges when translating code from
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C to Rust.
In summary, even though individual perturbations can have varying effects on each

model, the overall level of observed robustness remains quite similar across the models.
However, for this claim, it is also important to consider the range of output fluctuations.
GPT-4o-mini showed the smallest fluctuations, which also reflects in the strictest non-
robustness classification, implying that its practical robustness may be superior to that of
the other models. Their larger variability observed in practice does not necessarily reflect a
lack of robustness, rather, it might indicate a higher tendency for generating significantly
different solutions for identical inputs.

The upcoming evaluation of the feedback loops will further clarify whether this general
robustness is predominantly a result of the feedback loop approach, or if all models share a
comparable inherent robustness when faced with perturbed inputs.

9.4 Evaluating Feedback Loops across Models
Before evaluating whether feedback loops consistently improve robustness for perturbations
that primarily cause compilation issues (as observed for GPT-4o-mini), it is necessary to
compare their overall impact across the different LLMs.

Figure 9.9 shows the fuzzing success for all models with 𝑛 = 20 and increasing values
of 𝑘, both with and without feedback loops. Overall, feedback loops lead to performance
improvements across all models, but the increase is especially obvious for the local open-
source models. Without feedback loops, these models are significantly less likely to succeed
compared to the OpenAI models.

For Phi-4, previous results have shown that it responds well to changes in code comments,
achieving better performance when comments are paraphrased. Moreover, Phi-4 also
benefits strongly from the feedback loops that provide compiler, linting, or fuzzing outputs.
Since these outputs may act similarly to descriptive comments, the combined findings
suggest that Phi-4 ’s performance improves when the input includes clear, well-formulated
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Figure 9.10: Impact of feedback loops on GPT-3.5-turbo on the only non-robust strategy
of iteration one, classified by the maximum and minimum baseline values.

descriptions.
Furthermore, because the newly evaluated models perform no better than GPT-4o-mini

at the relevant 𝑘 = 5, they may also exhibit greater deviations from robust behavior when
feedback loops are not applied.

9.4.1 Feedback Loops on GPT-3.5-turbo’s Robustness
The impact of feedback loops on the robustness of GPT-3.5-turbo is visualized in Figure 9.10.
The plot is similar to those presented for GPT-4o-mini, however, instead of classifying the
perturbation in iteration one with the Z-Score, it uses the distribution’s maximum and
minimum values, as they do not overestimate the fluctuation for the model.

It can be observed how the feedback loops improve the general performance and also
elevate the non-robust IdenObfuscator to the minimum value of the distribution. However,
it is also visible that the fluctuations for the perturbations increase with higher iterations,
leading to a previously not significant perturbation exceeding the maximum distribution,
i.e. CamelCase. Additionally, it can be seen that not all perturbations get improved with
the same amount, leading to at least one non-significant perturbation producing results
similar to the minimum performance of the baseline. Specifically, in the last iteration of
the feedback loops, this happens to DeMorgan. However, since it does not clearly produce
worse results than the expected minimum, this does not necessarily mean it is an effect of
the perturbation and could just be a normal fluctuation.

9.4.2 Feedback Loops on Phi-4’s Robustness
Recall that Phi-4 showed non-robust behavior for three comment paraphrasing pertur-
bations with feedback loops. Figure 9.11 demonstrates that in iteration one, there were
sixteen perturbations causing a significant baseline exceeding performance. As increasing
iterations caused the elevation of the baseline, most of the initially outlying perturbations
present normal performance deviations in higher iterations. In addition, since IdenObfus-
cator was not a significant outlier, it is represented in the blue area. We can observe the
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Figure 9.11: Impact of feedback loops on Phi-4 on non-robust strategies of iteration one,
classified by the maximum and minimum baseline values.

same behavior that could be seen for GPT-4o-mini and GPT-3.5-turbo, namely that the
perturbation stops improving after two iterations, and therefore, based on the baseline, is
classified as a non-robust perturbation.

So overall, the feedback loops again reduce the magnitude of non-robustness, while this
time the non-robustness shows by increased performance.

9.4.3 Feedback Loops on Qwen2.5-Coders’s Robustness
Qwen2.5-Coder Figure 9.12a displays a lot of information. When only focusing on the first
iteration, the figure shows eight outlying perturbations. Since DeMorgan remained the
only Z-Score significant perturbation after all iterations, it was decided to present it as a
single line to improve interpretability. With increasing iterations, all other outliers move
closer to the baseline and therefore adhere to previous findings. With all feedback loops
only DeMorgan out of the previously outlying perturbations, exceeds the Z-Score area,
showing an almost perfect example for feedback loops increasing robustness.

Furthermore, as this is the only model that shows other negatively non-robust perturba-
tions than IdenObfuscator in iteration one, it is meaningful to show the compilation
success, to enable the evaluation whether the improvements are mostly due to easily fixable
compiler and linting errors, or whether the feedback loops also fixed logical problems shown
in fuzzing counterexamples.

Comparing outlying perturbations in compilation success in Figure 9.12b shows that
multiple perturbations also caused significantly worse success for compilation success. After
one feedback iteration, all of those perturbations are corrected to normal behavior, which
similarly shows in Figure 9.12a. In addition, the loops elevated DeMorgan compilation
success to a quite high performance by iteration ≤ 3. However, although the compilation
success could be elevated significantly, the fuzzing success from iteration ≤ 3 to ≤ 4 did
not increase. Only after a last increase of compilation success in ≤ 5, the fuzzing success
increases. That interplay suggests that the most amount of increased fuzzing success is
caused by feedback loops making more files compilable, which then could directly yield
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Figure 9.12: Impact of feedback loops on Qwen2.5-Coder on non-robust strategies of
iteration one, classified by the 3.29 Z-Score threshold.

fuzzing success without iterations of fixing counterexamples.
These findings support the hypothesis that feedback loops increase robustness, especially

when it is caused by failing compilations. The next section summarizes the information
across the different models, underlining the model-agnostic consistency of the feedback
loops impacts.

9.4.4 Overall Impact of Feedback Loops
Evaluating the models’ robustness without the incorporation of feedback loops makes it
clear that the observed robustness with feedback loops is strongly enhanced by the feedback
iterations.

In the first iteration, each model exhibits different sensitivities to the applied pertur-
bations. While both GPT-4o-mini and GPT-3.5-turbo perform similarly whether or not
feedback is employed, the open-source models demonstrate significant deviations in their
initial iteration, which are then effectively mitigated through the application of the feedback
loops.

That goes in hand with Figure 9.9, which showed that the local models were significantly
improved by the feedback loops and only with the help of those, presented comparable
results to the OpenAI models. Consequently, applying a feedback loop strategy is always
beneficial, not only for the general performance, but also for increasing the robustness.

However, despite the strong positive impact on performance and robustness, the current
feedback loop strategy reaches its limits when addressing robustness deficiencies primarily
caused by fuzzing counterexamples. An analysis combining the failures across all models,
as presented in Figure 9.13, indicates that the strategy is predominantly successful in
solving issues related to the compiler and clippy checks. Although some failures caused
by fuzzing are resolved, the majority of these errors remain uncorrected even after five
iterations. Moreover, as noted previously, simply increasing the number of iterations does
not necessarily improve the performance in the same way. Instead, a saturation effect in
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the feedback loop approach could be observed after two to three iterations.
Hence, for future work, it may be beneficial to try multiple variances of feedback loops.

For instance, implementing a strategy that starts an entirely new attempt after three
iterations fail, in order to maybe receive a better result due to fluctuation. Similarly,
one could combine and entangle multiple models for each iteration, as the Venn diagram
showed that different models have different success in solving different files. Before going
into a detailed discussion of all findings, it is necessary to show whether we can observe
differing correlations between similarity and robustness for different models.

9.5 Semantic Similarity in a Cross-Model Context
Chapter 8 came to the conclusion that for GPT-4o-mini and the ada-002 embedding
model, there is no clear correlation between perturbation similarity and translation success.
While the correlation is slightly higher without feedback loops, it vanishes when applying
feedback loops.

This section provides information, whether this finding also applies to other LLMs.
The assessment utilizes the same embedding vectors and shows the correlation between
the models’ translation success. For simplicity, the focus of this analysis is only on the
perturbations on the code part, as these are the relevant perturbations for the code
translation system.

9.5.1 GPT-3.5 and Semantic Similarity
Figure 9.14 demonstrates a similar behavior to what could be seen for GPT-4o-mini. The
least similar perturbation ABC causes a robust translation success with and without
feedback loops. Similarly, with feedback loops, the DeMorgan perturbation shows an almost



9. Extending the Analysis to Multiple Models 129

0.88 0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0.4

0.5

0.6

0.7

0.8

0.9
RP

1@
5 

Fu
zz

in
g 

Su
cc

es
s

Iteration 1

0.88 0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

Iteration 5

Robust High Similarity

Robust Low Similarity

Not Robust High Similarity

Not Robust Low Similarity

3  Baseline Cosine Similarity

Sampled Identity

ABC

Backtranslation-Code

Backtranslation-Comments

CamelCase

CodeFormat-LLVM

CodeFormat-Mozilla

ConditionSwap

DeMorgan

ForWhileSwitch

IdenObfuscator

PascalCase

RemoveComments

SnakeCase

Translation-GER-Code

Translation-GER-Comments

Translation-KOR-Comments

Identity

Figure 9.14: GPT-3.5-turbo’s correlation between cosine similarity and 𝑅𝑃1@5 with and
without feedback loops. The minimum and maximum range of the baseline
is used to define the robust area.

significant drop, while being highly similar. Furthermore, it seems that perturbations
with very high similarity scores show less deviation from the baseline than those with less
similarity.

Calculating the Pearson correlation coefficient [SBS18] between RC@P suggests a weak
correlation without feedback loops (−0.226). Similarly, the correlation coefficient on the
results with feedback loops also shows weak correlation(0.279). However, since it is not
negative, it suggests that perturbations with higher similarity scores yield less translation
success. ABC has a strong impact on this coefficient, as it has an outlying similarity,
subsequently with it yielding less change with feedback loops, the correlation is flipped.

Consequently, for the other OpenAI model, there is also no clear correlation that could
be used as a predictor for translation robustness.

9.5.2 Phi-4 and Semantic Similarity
Figure 9.15 details the high amount of perturbations that exceeded the baseline’s maximum
performance in iteration one. It might suggest that there could have been erroneous
translations during the baseline run, but manual investigation showed that the framework
worked as expected. Knowing the data points are valid, we can again observe that very
high similarity scores produce similar translation success, and with cosine similarity values
below ≈ 0.995, the perturbations start to deviate. With the feedback loops, this gets
less noticeable, which again also shows in the Pearson correlation: -0.237 (weak without
feedback loops) and -0.097 (negligible after five iterations).

9.5.3 Qwen2.5-Coder and Semantic Similarity
For Qwen2.5-Coder and 𝑘 = 1, there seems to be even less correlation (see Figure 9.16). The
data points do not follow any pattern and also deviate for very high cosine similarity values.
Although the very similar perturbations ForWhileSwitch and ConditionSwap only
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slightly deviate from the baseline without feedback loops. Other highly similar perturbations
like DeMorgan or Backtranslation-Comments show outlying performance in iteration
one. As detailed before, the DeMorgan perturbation causes the strongest performance
drop with feedback loops, although it is one of the perturbations with the highest similarity
scores. The Pearson correlation coefficient confirms what was observed visually. Without
feedback loops there is a negligible correlation (-0.034), and with feedback loops a weak
correlation (0.183).

Combining these findings highlights again that there is no linear correlation between
cosine similarity and translation success.

9.5.4 Overall Correlation between Similarity and Translation Success
The model-specific examination reinforced the findings that could be observed for GPT-4o-
mini. Without feedback loops, there is very little correlation, which vanishes entirely when
feedback loops are applied. Consequently, using cosine similarity to predict the robustness
of certain perturbation strategies appears ineffective. At least this is the result for the
proposed perturbation strategies and with the embedding model ada-002. It remains
possible that alternative, more code-specific embedding models might capture similarity in
different ways, leading to other correlation outcomes. Furthermore, since the perturbations
were designed to generate semantically similar code, applying additional perturbation
strategies that introduce more substantial modifications to the original files might reveal
the expected correlation.

Given that this aspect is not the primary focus of the thesis, the conclusion remains
that the translation success for similar inputs is influenced by highly individual factors or
pivotal tokens, making it challenging to predict whether a particular perturbation will
cause robustness deficiencies.

9.6 Interpretation for RQ5
The examinations of this chapter investigated whether the previous conclusions about
robustness with GPT-4o-mini can be transferred to different LLMs. With the knowledge
and conclusions of the particular comparisons, we can now empirically discuss RQ5: “Are
robustness results consistent using different LLMs?”

As demonstrated in Section 9.2, the various models exhibit notably different baseline
performances. While it was expected that different models would have different probabilities
of translating files successfully, it was surprising to observe that the general distribution
of those probabilities is drastically different for each model. This led to the conclusion
that always classifying non-robust behavior with the Z-Score is not effective. It rather
demonstrated that a thorough investigation of the baseline performance is always necessary
to interpret what performance deviations reflect non-robustness and what may be caused
by the nondeterministic nature of LLMs. This is also an interesting finding for RQ1 and
will be revisited in the concluding discussion of the thesis in Chapter 10.

The evaluation of robustness under deterministic perturbations revealed substantial differ-
ences among the models when feedback loops were not applied. While the IdenObfuscator
represented a single perturbation that resulted in significant performance drops across all
models, other perturbation strategies caused varying responses. Incorporating feedback
loops always led to dramatic increases in both performance and robustness, demonstrating
that such loops are generally superior and should be incorporated in practical applications.
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Nevertheless, even with feedback loops, every model exhibited at least one perturbation
that stood out as a significant robustness outlier. In addition, the discovery that feedback
loops predominantly solve issues with compiler or linter errors could also be transferred
across models.

By aggregating the mean performance (𝑅𝑃1@𝑘) and the robustness relative to the
baseline (𝑅𝐶1@𝑘), one can interpret and compare the usability of the different models.

Figure 9.17 supports what has been detailed earlier. The optimal choice of model can
depend on the number of runs one is willing to invest. When considering a single run (𝑘 = 1),
GPT-4o-mini demonstrates superior performance and exhibits the smallest deviation from
its baseline under perturbations. While this difference is highly noticeable with feedback
loops, it still remains after all iterations of the feedback. This finding somewhat aligns with
the model comparison over different 𝑘 in Figure 9.9, where Qwen2.5-Coder exhibited the
best one-shot performance, closely followed by GPT-4o-mini. Under perturbations, one
can observe that Qwen2.5-Coder yields more performance deviations under perturbations
than the OpenAI models.

When the evaluation is expanded to five runs, as shown in Figure 9.17b, the initial
superiority of GPT-4o-mini dissolves once feedback loops are incorporated. In this con-
text, GPT-3.5-turbo yields higher translation success but with the drawback of reduced
robustness, whereas Phi-4 shows slightly lower translation success yet exhibits greater in-
sensitivity to perturbations. Additionally, the standard deviation derived from the Sampled
Identity reveals that GPT-3.5-turbo and Phi-4 yield less consistent results for identical
inputs. Therefore, the choice of model must be tailored to the specific requirements of the
application of the code translation system.

Recall that the robustness analysis of GPT-4o-mini in Chapter 6 also incorporated the
error rates of the system. At this point, the error rates for the other models have not been
discussed. Appendix A.4 displays the different error rates per perturbation for each model.
It was observed that the additionally examined models GPT-3.5-turbo, Phi-4, as well as
Qwen2.5-Coder resulted in slightly higher error rates than GPT-4o-mini. While this is a
noteworthy finding, it does not impact prior conclusions about robustness, because the
error rate for the baseline Identity was comparably elevated. Also, with GPT-4o-mini’s
low error rate and GPT-3.5-turbo successfully translating the highest amount of files
(Figure 9.2), these errors are most likely a result of incorrect translations, produced by the
models themselves. As mentioned, Figure 9.9 showed that GPT-4o-mini had a significantly
higher success rate on 𝑘 = 1 without feedback loops compared to the other models. However,
when applying the feedback loops with two additional attempts (𝑘 = 3), the figure shows
that GPT-4o-mini performs worse than all other models. So the errors are likely not due
to the experimental setup or implementation, but rather due to a genuine weakness of the
models. Since all errors are also indirectly incorporated in Figure 9.17, this only reinforces
the need for a requirement-specific choice of the LLM.

Imagine a scenario where cost and hardware limitations are no factor and the setup
automatically performs five runs. In this context, in experimental setups, where the goal
might be the highest translation success, GPT-3.5-turbo is suggested to be the best fit. In
environments that pose challenges through highly inconsistent code or badly written code,
the choice could be to translate with Phi-4. However, when the requirement is to produce
consistent results for identical inputs, with light deficits in robustness and translation
success, the decision could be to use GPT-4o-mini.

This digression shows that although the models are quite robust and show similar
behavior on feedback loops, even small nuances can reveal strengths and weaknesses of



9. Extending the Analysis to Multiple Models 133

0.4 0.5 0.6 0.7 0.8
Mean RP1@1 Fuzzing Success

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
RC

1@
1 

Fu
zz

in
g 

Su
cc

es
s

Model Robustness with k = 1
Model
Qwen2.5-Coder
Phi-4
GPT-3.5-turbo
GPT-4o-mini
Iteration
No Feedback Loops
With Feedback Loops
±  (Sampled Identity)
±  RP RC

(a) 𝑘 = 1

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Mean RP1@5 Fuzzing Success

0.00

0.05

0.10

0.15

0.20

M
ea

n 
RC

1@
5 

Fu
zz

in
g 

Su
cc

es
s

Model Robustness with k = 5
Model
Phi-4
GPT-3.5-turbo
GPT-4o-mini
Iteration
No Feedback Loops
With Feedback Loops
±  (Sampled Identity)
±  RP RC

(b) 𝑘 = 5

Figure 9.17: Comparison of performance and robustness in fuzzing success for the eval-
uated LLMs under deterministic perturbations. The ellipses represent the
standard deviations of the aggregated metrics 𝑅𝑃1@𝑘 and 𝑅𝐶1@𝑘, high-
lighting the variability among measurements. Additionally, the standard
deviation of the Sampled Identity is included to reflect the baseline’s noise
due to nondeterministic fluctuations with identical inputs.
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different LLMs.
It is also noteworthy that the observation of cosine similarity not strongly correlating

with translation success maintains true for all the models examined.
Combining this information for RQ5 suggests that high-level robustness results are

consistent among models, whereas the effects of single perturbations can differ significantly.
Nonetheless, the consistent impact of IdenObfuscator suggests that some perturbations
pose inherent challenges when LLMs are tasked with translating C code into Rust.



10 Discussion
This chapter summarizes the robustness evaluation results found by applying the proposed
framework on SOTA LLMs in prior chapters. The information is used to give detailed and
compact answers to the RQs that arose due to the significant research gaps in this area
(Section 1.2). Furthermore, the chapter discusses threats to the validity of these findings
and presents improvements that can be addressed in future work. Lastly, Section 10.5
elaborates on the implications of the results of the thesis and whether the LLM-based
code translation system is Sáenz’s “benefactor” or rather a “veritable public enemy”.

10.1 Summary and Contributions
This thesis presented a comprehensive framework for a systematic robustness evaluation of
LLM-based C-to-Rust code translation that addresses the need for code-specific perturba-
tions, LLMs-agnostic evaluations, as well as nuanced aspects like feedback loops, semantic
similarity, and noise differentiation. The main contribution is a three-step framework
(Figure 4.1) that enables the assessment of how LLMs handle realistic variations in the
input for the use case of code translation.

Step I of the framework performed perturbations, i.e., various strategies to generate
semantically similar, but structurally different variations of an original prompt containing
a natural language instruction and the C code that is to be translated, which the thesis
named Identity. A total of 23 distinct perturbation strategies were applied, targeting either
the instruction, comments, or code across six levels of complexity described in Section 4.2.2,
and mentioned in Table 4.1. This directly met the need for code-focused input variations
that go beyond instruction paraphrases. The perturbed prompt and the Identity were
systematically fed into an existing SOTA C-to-Rust translation system in Step II [QHW25],
using selected LLMs and a generate-and-check pattern to directly verify translation success.
In detail, the system incorporated checks for compilation success and fuzzing success that
verified for functional equivalence with differential fuzzing (Section 4.3.4) and applied
feedback loops in case of checking failures. This specific setup allowed for the robustness
investigation of the identified research gaps and robustness nuances absent in the literature
regarding an assessment specifically for code translation, languages C and Rust, as well as
the behavior of modern LLMs and the impacts of feedback loops. Step III enabled the multi-
dimensional analysis of the translation outcomes. It employed established (RP𝑠@k, adapted
from Wang et al. [Wan+23]) and novel (RC𝑠@k) robustness metrics, complemented by a
semantic similarity analysis using embeddings (Section 4.4), allowing a nuanced assessment
whether semantic similarity correlates with robustness deficits.

An important part of the framework’s application methodology (Section 4.5) involved
establishing model-specific baseline distributions for repeated translations of unperturbed
inputs. As detailed in Section 5.2 and Section 9.2, this allowed distinguishing between
inherent LLM noise and actual robustness deficits caused by perturbations.

The framework was used with the 23 perturbation strategies. The evaluation consisted of
20 deterministic and 48 stochastic perturbed variations of the prompts (68 in total), when
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considering different perturbation targets, 𝑠 = 3 variants for stochastic strategies, along
with the Identity baseline. The evaluation used a curated 50-file C benchmark dataset
primarily including industry-relevant internal automotive code (Section 5.1, Figure 5.1).
The largest robustness analysis was performed for the modern and widely-used GPT-
4o-mini, using all 68 prompt variations. This analysis started by aggregating results
for different groups of perturbations and later examined perturbation-specific as well as
file-specific effects in depth. In addition, the analysis compared results among different
iterations of the feedback loops, and incorporated the semantic similarity in the form of
cosine similarity into the evaluation. While the analysis had the highest detail for GPT-4o-
mini, for additional and comparative insights, the thesis also investigated GPT-3.5-turbo,
Phi-4, and Qwen2.5-Coder-14B on deterministic perturbations with a lower level of detail
(Section 9.3).

The empirical data collected from the systematic investigation detailed in Chapters
5 to 9 form the basis for answering the RQs that arose due to the identified research gaps.

10.2 Answering the Research Questions
Based on the evaluation results of the framework, this section answers the RQs introduced
in Section 1.3 and summarizes the findings from Chapters 5 to 9 to provide the necessary
evidence.

10.2.1 RQ1: Components for a Comprehensive Robustness Evaluation
RQ1 is the main RQ for this thesis and presents the basis for all following and in-depth
questions. It asks: “What methodologies and components should be integrated into a
comprehensive evaluation framework to assess the robustness of an LLM-based code
translation system?” By applying the framework on a benchmark dataset, this thesis
empirically showed that a comprehensive robustness evaluation framework for LLM-based
code translation requires several key components and methodological principles: (i) the
use of systematic and diverse generation of perturbations that reflect real-word variations
in code, (ii) a translation pipeline with automatic verification of functional equivalence, as
well as (iii) multi-faceted performance metrics and a suited methodological application of
the framework to employ the metrics and enable a systematic noise differentiation. Due to
the empirical results, each of the components can be directly justified:

(i) Perturbations As already shown by previous work, robustness should be examined
by employing semantically similar, but structurally different input variations [Wan+23;
Mas+23; Yan+23a; Imp+25]. However, the thesis reasoned that such input variations have
to go beyond simple natural language instruction variations for the code translation use
case, since code translation rather works with a fixed instruction in the prompt. To evaluate
a code translation system for practical usage, it needs an assessment of whether the model
behaves unexpectedly for prompts with semantically similar, but structurally varying
source codes. Moreover, these variations should not be limited to superficial modifications
that only focus on comments or identifier names, but also make profound changes to
the code, to test the model’s capabilities for scenarios with differently formatted or even
equivalent implementations with differing control flows. For a better classification of a
perturbation’s “depth”, the thesis used the six levels of code changes introduced by Faidhi
and Robinson [FR87].
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The results of the experiments proved that all these additional considerations were
necessary. Specifically, just using instruction perturbations would have missed key code-
variational weaknesses. Namely, most models suffered a consistent and significant drop
in performance to the IdenObfuscator (GPT-4o-mini in Figure 6.1a, GPT-3.5-turbo in
Figure 9.6, and Qwen2.5-Coder-14B in Figure 9.8) strategy, a robustness issue that would
have been hidden without direct code perturbation. Another example is the stochastic
LLMCodeExtraction perturbation that caused major performance drops for GPT-4o-
mini and led to the conclusion that the LLM might show weaknesses for code with higher
amounts of nested functions. Furthermore, the various code perturbations that did not
cause significant deviations build confidence that varying casing styles or formatting styles
will not negatively impact the translation performance of the evaluated, modern LLMs.
Additionally, while it could not be shown that deeper perturbation levels necessarily cause
stronger robustness deficits (Table 6.3 and Table 6.7), using the levels as orientation was
still beneficial. It enabled a systematic exploration of perturbation strategies in general, and
additionally revealed that sensitivities were strategy-specific, not complexity-dependent
(e.g., IdenObfuscator in Level II consistently causing stronger performance deviations
than the Level VI ConditionDup). Thus, it was illustrated by the thesis that LLMs
can be robust to variations at all levels, even containing variations in decision logic, but
can simultaneously be weak for particular strategies. So, a robustness evaluation must
be comprehensive and cover a broad range of diverse perturbation strategies to reflect
different scenarios and enable an assessment that does not overestimate the robustness.
These mentioned findings could have gone unnoticed without these perturbation levels
and also align with Nezhurina et al.’s [Nez+24] concerns regarding generalization. The
experiments in the thesis demonstrated that while there is robustness against the high-level
ConditionDup perturbation in Level VI, this does not imply that there is robustness
against the lower-level IdenObfuscator in Level II. That clearly reveals that level-wise
robustness is not transferable.

(ii) Translation Pipeline Verifying Functional Equivalence To assess the robustness,
it is necessary to quantify the performance of the system. Since the ultimate goal of a
successful code translation is functional equivalence, verifying this characteristic is crucial to
quantify a system’s performance. Furthermore, to get SOTA translation performance, a code
translation system uses the auto-repairing feedback approach, which, in addition to repairing
functional equivalence counterexamples, also repairs translations that cannot be compiled
or contain linting errors. Moreover, it is necessary to account for a model’s nondeterminism
by leveraging multiple translation attempts. The evaluation results demonstrate that
considering these aspects is important for a comprehensive robustness evaluation.

Due to many translations passing compilation but failing functional equivalence checks
Figure 5.5, relying on compilation alone is insufficient. Hence, it is necessary to test
equivalence directly via differential fuzzing to measure robustness relevant to practical
usability. In addition, Section 5.2, Section 9.2, and specifically Figure 9.4, highlight the
necessity of repeated translation attempts. Due to the significant performance fluctuations
observed even with the same input, it is necessary to run multiple times, requiring
pass@k-based metrics due to this nondeterminism. Moreover, Chapter 7, or Figure 9.9 in
particular, detailed the importance of integrating the feedback loops, as they drastically
improved the overall translation performance and also robustness, which will be concluded
in Section 10.2.3. Without feedback loops, the open models would have been judged
significantly worse. Since feedback loops are highly beneficial, only with the drawback of
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an increased number of LLM calls, practical applications will most likely make use of
such strategies. Consequently, assessing the robustness only without feedback loops would
not have been as practically relevant for LLM-based code translation systems. However,
ignoring the system’s performance without feedback loops completely would have prevented
the evaluation from revealing profound weaknesses that could only be due to the iterative
repairs (Figure 7.6, Figure 9.12).

(iii) Performance Metrics and Application Methodology The perturbations and the
translation pipeline produced vast translation statistics. However, to comparably quantify
robustness, it needs specific robustness metrics and strategies for applying the first two
components in an accurate evaluation that distinguishes between genuine robustness
deficits and nondeterministic model noise.

The established RP𝑠@k metric by Wang et al. [Wan+23] was beneficial for examining
translation performance for stochastic perturbations that can produce different variations
for the same file, where one could lead to stronger deviations than another. RP𝑠@k as a
performance metric enabled quantifying the translation statistics for the entire dataset
and over the repeated translation attempts. In addition, the introduction of RC𝑠@k, which
measures the relative performance deviation to a baseline, enabled an intuitive judgment
of the magnitude of perturbation impact. That was especially beneficial for RQ3 and
evaluating the impact of feedback loops on robustness (Figure 7.7), or when comparing the
robustness of different models addressing RQ5 in Figure 9.17.

Furthermore, the proposed aggregation strategies in Section 4.5.2 are a valuable com-
ponent of the framework to reveal robustness results for perturbations across the entire
dataset or by combining perturbations of different characteristics, such as their target
or perturbation level. Nonetheless, when wanting to interpret and identify reasons for
perturbation issues, results at the file level became helpful (Section 6.1.3 or Section 6.2.3).

Moreover, the statistical methodology to distinguish between noise and robustness
deficits (Section 4.5) turned out to be indispensable. Figure 9.4 showed that different
models can produce significantly different noise profiles, which completely prevents a
comparative analysis, even when the LLMs are used with identical sampling strategies
and configurations. Only comparing RP𝑠@k and RC𝑠@k across models and perturbations
would have resulted in inconsistent conclusions about the effects of perturbations. Since
this is the focus of RQ2, it will be discussed in more detail in Section 10.2.2. Similarly,
including the semantic similarity of perturbations was beneficial to evaluate whether
embedding-based similarity can be used as a prior predictor of robustness, which will be
concluded in Section 10.2.4.

Conclusion of RQ1 In summary RQ1 can be answered as follows:

Answer to RQ1:
A comprehensive robustness evaluation for LLM-based code translation systems should
involve the combination of (i) diverse, code-focused perturbations covering multiple
complexity levels, (ii) a task-specific generate-and-check-based translation pipeline
with feedback loops and a capability of performing repeated translation attempts,
as well as (iii) an evaluation methodology with adequate metrics, systematic noise
separation, fine-grained performance aggregations, and incorporating context like
perturbation similarity.
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10.2.2 RQ2: Distinguishing Between Model Noise and Robustness
RQ2 targets the model noise and asks: “How does one differentiate between inherent
LLM nondeterminism (noise) and true robustness deficits?” As detailed earlier, LLMs
are stochastic, nondeterministic models that can produce different outputs for identical
inputs in repeated attempts. In the context of a robustness evaluation, which aims to
quantify whether perturbations cause significant deviations in performance, this poses a
challenge that has to be solved. An observed performance change could reveal a genuine
lack of robustness or represent a normal fluctuation that has to be accepted when working
with LLMs. If there is no proper strategy, it is possible that the human evaluator using
the framework may misinterpret results and classify noise as non-robust behavior or vice
versa. Section 4.5.1 presented a statistical baseline methodology to tackle this problem.
The basic idea of this is to determine how much we expect LLM’s performance on the
unperturbed Identity dataset to change. This calculation uses the same settings which
are subsequently employed for the robustness evaluations under perturbations. To be
more precise, this indicates the same parameters 𝑛, 𝑘, and 𝑠 that the RP𝑠@k of single
perturbations is measured with. Thus, to determine the performance distribution range,
it needs a larger number of baseline runs 𝑁𝑡𝑜𝑡𝑎𝑙 > 𝑛, with the value of 𝑁𝑡𝑜𝑡𝑎𝑙 = 20 in the
thesis’s experiments.

In order to apply this methodology, the thesis produced baseline distributions for the
evaluation parameters used for the deterministic perturbations 𝑠 = 1, on all evaluated
models, and the stochastic perturbations 𝑠 = 3 on GPT-4o-mini. These distributions
were analyzed in Section 5.2.3, and Section 9.2.3 and revealed significant differences
for each model. GPT-4o-mini demonstrated comparatively tight, normally distributed
fluctuations in Figure 9.4. Other models like GPT-3.5-turbo and Phi-4 showed much
greater, multimodal or skewed distributions in the same Figure. This key finding indicated
that there cannot be a uniform threshold that specifies “significant change” and that a
robustness evaluation always must consider a model-specific threshold to distinguish noise.

While the initial methodology in Section 4.5.1 proposed working with an absolute Z-Score
of 3.29 to define the significance threshold, the technique could not be applied for the wide-
ranging distributions of GPT-3.5-turbo and Phi-4. For these irregular distributions, the
differentiation incorporated the maximum and minimum values of the value distribution.
Considering this adaptation, the model-specific baseline was used in Chapters 6 to 9 to
provide an orientation for identifying unexpected performance deviations. Only when a
perturbation causes performance deviations significantly outside of the distribution and
greater than the threshold can we identify a perturbation as likely causing non-robust
behavior.

However, it is necessary to note that this approach does not enable a classification
of non-robust behavior with complete certainty. It always depends on whether 𝑁𝑡𝑜𝑡𝑎𝑙

accurately reflects the real model fluctuations. Consequently, a larger number of 𝑁𝑡𝑜𝑡𝑎𝑙

runs increases the likelihood that the value distribution is accurate. Other than that, it
has been shown that the noise threshold has to be adapted model-specific, because of
the varying noise profiles (Figure 9.4). Consequently, this approach might not be fully
optimized for a standardized model-agnostic evaluation. Yet, the general strategy remains
valid. Performance deviations to perturbed inputs that clearly lie within the baseline
distribution can never be confidently attributed to non-robustness, because the model
certainly produced the same, or even worse, fluctuations for identical inputs on repeated
attempts. Therefore RQ2 can be answered as follows:
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Answer to RQ2:
To differentiate between inherent LLM nondeterminism and true robustness deficits,
one needs to quantify the individual performance variability of an LLM tasked with
identical prompts in repeated runs. By using many runs on unperturbed inputs, under
the evaluation conditions relevant for later perturbations, one can build a statistical
baseline distribution of expected performance values. With this baseline, one can
utilize a statistical strategy suited to the observed characteristics of the distribution
to identify outlying performances (Z-Score, Maximum, Minimum). When performance
under a perturbation deviates greatly from what is expected, it likely signals true
robustness deficits.

10.2.3 RQ3: Impact of Feedback Loops on Robustness
Similar to other SOTA code translation systems [Yan+24b; Eni+24], the evaluated system
in the thesis leverages the generate-and-check pattern for an iterative repair with feedback
loops. That raised the question for RQ3: “Does incorporating a feedback loop strategy
impact robustness?”

The implemented feedback approach described in Section 4.3.4 utilizes checks for com-
pilation, linting, and functional equivalence with fuzzing. The experiments and analysis
in Section 7.2, Figure 7.1, as well as Section 9.4, and Figure 9.9, revealed that feedback
loops significantly increase the translation performance (𝑅𝑃𝑠@𝑘) on the Identity for both
compilation success and fuzzing success. In addition, Figure 7.1 signals that the strongest
benefit is due to the first two iterations. Beyond this, the improvements saturate. Moreover,
Figure 9.9 shows that the open models Phi-4 and Qwen2.5-Coder-14B only produced
comparable performance to OpenAI’s models because of feedback loops. In the context of
the robustness evaluation, it is worth mentioning that incorporating feedback loops also
reduced the range of performance fluctuations (Figure 7.1). Using the statistical strategy
to distinguish between noise and robustness deficits, this becomes particularly beneficial,
as smaller deviations lead to outlying performance.

Besides improving the performance and reducing the variance, the experiments demon-
strated that feedback loops have a strong impact on robustness. Specifically, they can
reduce the magnitude of robustness deficits for perturbations that initially caused signifi-
cant deviations (Section 7.3, Section 7.4, Section 9.4). Comparing the different RC𝑠@k
values across iterations clearly shows this effect, as the amplitude of values decreases with
iterations on GPT-4o-mini in Figure 7.7. Similarly, the Figures 9.10 to 9.12 demonstrate
the same behavior for GPT-3.5-turbo, Phi-4, and Qwen2.5-Coder-14B.

Analyzing the reasons for each iteration in Figure 7.8 and Figure 9.13 revealed that the
feedback loops worked best when failures arose due to compilation and linting issues. The
Figures show that the amount of compilation and linting issues could be reduced with more
iterations, yet fuzzing issues only reduced slightly in higher iterations. Figure 7.6 confirms
this and shows how the perturbations ConstantInsertion and DeadCodeInsertion
initially caused significant performance deviations, but with two to three feedback iterations,
improved the performance to the normal range of fluctuations. The investigation in
Section 7.4 revealed that both perturbations initially failed because of either compilation
issues or linting issues. By contrast, other perturbations that initially caused non-robust
behavior only due to failing fuzzing checks (IdenObfuscator, LLMCodeExtraction),
maintained their significant outlying performance also after five iterations (Section 7.4).



10. Discussion 141

Consequently, feedback loops can reduce the amount of perturbations that cause true
robustness deficits, especially when they are primarily due to translations containing
easily fixable issues in compilation and linting. Comparing Figure 7.4 with Figure 6.4 or
Figures 9.6 to 9.8 with Figures 9.10, 9.11, and 9.12 clearly shows that fewer perturbation
strategies were causing true robustness deficits after applying five feedback iterations.
However, with feedback loops improving the performance and reducing the value range
of the baseline distribution, it could also be observed that certain perturbations did not
improve comparably to the baseline (CamelCase for GPT-3.5-turbo in Section 9.4.1).
This led to the perturbation causing non-robust behavior, as they are not in the expected
range for the system with feedback loops. Therefore, feedback loops do not always improve
robustness and reliability for all scenarios. However, since they consistently improve the
general performance and reduce the magnitude of most deviations for all evaluated models,
they present a highly beneficial technique for the robustness and performance of an LLM-
based code translation system. Based on the gathered information RQ3 can be answered
as follows:

Answer to RQ3:
Yes, the feedback loop strategy positively impacts the robustness of LLM-based code
translation systems. They reduce the magnitude of performance deviations caused by
perturbations and significantly improve the general performance while simultaneously
decreasing the range of the model’s fluctuations. They work best when issues are due
to translations failing compilation or linting checks and have limited capabilities when
issues are stemming from fuzzing differences. So while they usually reduce the gap
between baseline and perturbed inputs, they do not necessarily erase all robustness
deficits for fundamentally difficult perturbations.

10.2.4 RQ4: Correlating Semantic Similarity and Robustness
With RQ4, the thesis motivated an investigation into whether identifiable robustness
deficits are primarily driven by the magnitude of change a perturbation causes, or whether
the effects are specific to the strategy itself. Non-robust behavior for perturbations highly
similar to the Identity is more concerning than for perturbations that produce completely
different inputs. This led to RQ4 asking: “What is the correlation between semantic
similarity and perturbation-based robustness?” If there is a clear correlation, the semantic
similarity measure can be leveraged to predict the likelihood of robust performance and
additionally be used to reveal perturbation strategies that cause deficits with only a few
but pivotal changes.

To approach the question, the thesis employed embedding-based cosine similarity,
quantifying similarity scores to the unperturbed Identity. Small examples showed that
this approach yielded more desirable similarity scores for this context than other lexical
or matching approaches (Section 4.4.4). The intuition was that an embedding-based
measurement is better suited for quantifying semantical changes and accurately reflects
similarity for perturbations, adding or changing comments, modifying variable names, or
formatting the code style. Specifically, OpenAI’s ada-002 model [Ope22c] that has also
been trained for vectorizing code inputs seemed a good choice for this challenge. While
cosine similarity can in theory produce values between −1 and 1, in reality, the value
range is much smaller, as shown in the examples in Section 4.4.4. Thus, to enable a better
interpretation and distinguish between heavily modified and sparsely modified inputs, the
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thesis established a baseline distribution by computing pairwise similarity scores of all files
of the dataset. Subsequently, this value distribution shows similarity scores for files that
are not semantically similar, so values that are higher than this distribution are likely to
show similar scores. Again, the thesis used the Z-Score to classify whether perturbations
are “relevant” since they produced highly similar input variations, or whether they are
less relevant as the changes were too drastic.

Applying this technique signaled that most perturbations that target code and comments
yielded cosine similarity scores, which suggest high semantic similarity. Only the ABC,
ConstantInsertion, and DeadCodeInsertion perturbations resulted in seemingly low
similarity scores. Furthermore, the similarity scores on the instructions were harder to
interpret, as their scores were more strongly impacted by perturbations. By summarizing
these findings, the thesis concluded that similarity scores with this approach are heavily
dependent on the number of tokens of the compared input. For the context of this thesis,
this is not optimal, as smaller files might show stronger similarity deviations than larger
files, while still having undergone the same semantic modification. This makes a correlation
analysis less meaningful, as it does not fully reflect the desired concept of semantic
similarity. Moreover, with ABC producing the smallest similarity scores for deterministic
perturbations on the code part, embedding-based similarity suggests being sensitive to
modifications of pivotal tokens. This perturbation only replaces identifier names with a
single character, not changing the control flow or structure of the code. While this finding
was unexpected, it shows that this approach may capture differences between a human
conception and an LLM’s conception of the inputs.

To gather the information necessary to answer the RQ Sections 8.3 to 8.4 and Section 9.5,
visualize the correlation between 𝑅𝑃𝑠@𝑘 and cosine similarity in scatter plots. In case of a
clear correlation, these scatter plots would have shown a linear progression. Specifically,
with increasing similarity, the deviation from the baseline would have gotten closer.
However, while this is slightly noticeable for the translation statistics without feedback
loops, the correlation vanished completely for all evaluated models after feedback iterations
were applied. For a less subjective measurement, the thesis additionally incorporated the
Pearson correlation coefficient [SBS18]. Nonetheless, this only confirmed the results that
could be seen visually. For instance, the already mentioned ABC perturbation resulted
in the least similarity for perturbations on code, yet the translation performance of all
models was mostly inside the expected value range (Figure 8.2, Figure 9.14, Figure 9.15
or Figure 9.16). Similarly, DeMorgan is suggested as a highly similar perturbation,
yet it caused significant outlying performance for Qwen2.5-Coder-14B in Figure 9.16.
Consequently, with the proposed methodology, there is no clear correlation between
robustness and semantic similarity that could be used for an a priori prediction. Whether
this is because of the used cosine similarity not being the best semantic similarity measure,
or rather because a model’s robust performance is highly individual and not predictable,
remains an open question for future work, which will be discussed in Section 10.4. With
the knowledge of the thesis, the RQ can be answered as follows:

Answer to RQ4:
Using embedding-based cosine similarity suggested that there is no strong linear
correlation between similarity and translation robustness, especially when feedback
loops are active. While certain scenarios and subsets show minor trends, cosine
similarity was not sufficient to reliably predict which perturbation would cause
robustness deficits.
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10.2.5 RQ5: Robustness Across Models
While the conclusions of the other RQs already contained information for all models,
the thesis initially examined robustness for GPT-4o-mini in detail (Chapters 6 to 8).
In Chapter 9 it extended the evaluation to other models to gather the information for
RQ5: “Are robustness results consistent using different LLMs?” By extending the analysis,
the thesis investigated whether code translation robustness findings for deterministic
perturbations are transferable to other models or if they are model-specific.

Chapter 9 first demonstrated that the baseline performance varies strongly across
models. No model turned out to be superior in all scenarios, and determining the best
model depended on the number of translation attempts (Figure 9.1). Moreover, Figure 9.2
illustrated that some models can translate files that other models fail at and vice versa.
Lastly, it could be observed that the noise profile of the models does vary greatly. GPT-4o-
mini shows a tight, normally distributed profile, whereas Phi-4, or GPT-3.5-turbo, show
skewed or multimodal value distributions, subsequently influencing the trustworthiness of
the Z-Score.

Focusing on the robustness findings of the different models reveals that they follow
some general trends, but are mostly highly individual to the model. In detail, after
applying the feedback loops, it could be observed that IdenObfuscator consistently was a
perturbation where the models showed comparably worse translation performance than
for the Sampled Identity baseline (Figures 6.1a, 9.6, 9.7, 9.8). Additionally, it could be
observed that the models predominantly performed robustly under the deterministic
perturbations. This highlights that there are some prominent consistencies for all models.
However, the cross-model comparison also revealed different significant perturbations for
different models beyond IdenObfuscator. To be more precise, GPT-4o-mini exhibited non-
robust performance improvements for Translation-GER-Comments and CodeFormat-
Mozilla (Figure 5.5b), whereas GPT-3.5-turbo signaled non-robust improvements for
CamelCase (Figure 9.6), and Phi-4 for all perturbations targeting comments (Figure 9.7).
Conversely, Qwen2.5-Coder-14B showed significant performance deviations for DeMorgan
(Figure 9.8). So while a predominant robust performance for most perturbations could be
observed, the examination highlights that the actual robustness for certain strategies has
to be evaluated model-specific.

Besides the general robustness, it could be observed that the conclusions for feedback
loops are consistent for all models. Namely, they reduced the magnitude of non-robust
deviations without fully ensuring robust performance for all perturbations after all iterations
(Section 9.4). This underlines that this technique is beneficial for all LLMs in code
translation. Furthermore, the discovery that the feedback loops work best when repairing
compilation and linting issues turned out to be consistent (Figure 9.13). Another surprising
finding was that the open models Phi-4 and Qwen2.5-Coder-14B benefited more from the
technique than the models from OpenAI, since their initial performance was significantly
worse.

Similarly, correlating cosine similarity and translation success for all models confirmed
the prior findings that there is no reliable correlation between semantic similarity and
robustness. It remains a question whether this is due to the cosine similarity approach not
accurately reflecting the actual similarity of the input variations, or the models simply not
being predictable just with the knowledge of input similarity (Figures 9.14 to 9.16).

Concluding the gathered information to select the “optimal” model for the code transla-
tion system in Figure 9.17a and 9.17b demonstrates that the decision is multi-faceted. The
figures show that the optimal choice of the model depends on the number of translation
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attempts, the acceptable fluctuation range, the robustness against perturbations, and the
performance. There was no model that was superior in all these facets, leading to the
decision being strongly dependent on priorities and requirements.

Summarizing this information RQ5 can be answered as follows:

Answer to RQ5:
Robustness results are not fully consistent across different LLMs. Specifically, the
robustness of single perturbations, as well as the models’ noise profile, can vary greatly
and have to be investigated for each model in particular. Nonetheless, the models
predominantly performed robustly under perturbations, while having a weakness for
IdenObfuscator in common. Moreover, the impacts of feedback loops, as well as the
absence of a correlation between cosine similarity and robustness, remained consistent.
However, the differences in performance and sensitivity to perturbation strategies
ultimately lead to performance-robustness trade-offs that are highly model-specific.
Therefore, robustness has to be evaluated individually for each LLM considered for a
code translation.

10.3 Threats to Validity
This section discusses potential limitations of the proposed framework and the discoveries
and conclusions that could be found by applying it. These limitations can influence the
validity of the conclusions about the robustness of LLM-based code translation systems
and the RQs. The threats to validity are subsequently distinguished between internal
validity and external validity. Furthermore, the section provides a critical reflection on
specific framework elements that, in light of insights gained from the evaluation, no longer
appear optimal.

10.3.1 Internal Validity
Internal Validity refers to whether the discoveries and conclusions are truly because of
the examined reasons, or if and to what extent they fall victim to limitations of the
methodology.

Differential Fuzzing as Approximation of Functional Equivalence As mentioned
before, the utilization of differential fuzzing to verify functional equivalence is only an
approximation of functional equivalence. It cannot guarantee equivalence, conversely to
other approaches like a formal verification, which is not fully autonomous and was used
by VERT (Section 2.4.2). Moreover, differential fuzzing depends on the configured fuzzing
time, and one could argue that the chosen fuzzing time of 15 seconds might not be enough.
However, different fuzzing times have been manually tested beforehand, highlighting that
counterexamples are identified rather quickly, and longer fuzzing times did not reveal any
other counterexamples. Nonetheless, it should be noted that the approach comes with the
risk that subtle functional dissimilarities remain undetected, potentially leading to an
overestimation of the system’s capabilities.

Implementation Errors in the Framework Both the differential fuzzing as well as the
automatic generation of perturbations are not trivial and might involve errors or unexpected
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behaviors in certain edge cases. With respect to fuzzing, the framework documented fuzzing
exceptions and fuzzing setup errors to incorporate them into the robustness interpretation
in Chapter 6. This led to excluding the Translation-KOR-Code from the evaluation, as
the fuzzer was not able to process identifiers with Korean characters. All perturbations
showed some amount of errors in Appendix A.4.1, meaning that they could potentially
have influenced the conclusions about robustness. However, the overall percentage of errors
among all translation attempts was small, and it was shown that these errors have never
been the major reason for problematic or non-robust translations. So the actual risk of
these errors impacting the conclusions is rather small, especially when evaluating with
𝑛 = 𝑘 = 5, which will also be discussed in this section.

Besides the validity of fuzzing, another important threat is the validity of perturbations.
While all perturbations incorporated a syntax check, to directly detect syntax errors that
prevent the application of the fuzzer, the framework did not check for semantic equivalence
of perturbations. While it would have been possible to use another differential fuzzer that
verifies functional equivalence and therefore semantic equivalence between Identity and
the perturbed Code, the decision was made not to include it, as it would have exceeded the
scope of this thesis. The implemented perturbations were chosen because they should not
change the semantic equivalence by definition. Nonetheless, without a tailored check, the
perturbation cannot be guaranteed to adhere to the semantical equivalence requirement
(Section 4.2.1).

Another threat that is noteworthy in this context is that IdenObfuscator produced
above-average percentage fuzzing setup errors. Upon close investigation, these errors are
due to the perturbation creating the function name “_” that is valid in C, but creates
a syntax error when translated into Rust. This makes a successful fuzzing impossible
when such a function name is created by the perturbation. However, in Appendix A.4.1
it has been shown that none of the non-robustly translated files were affected by these
issues for GPT-4o-mini, meaning that the LLM failed to create a functionally equivalent
translation and was not limited by the capabilities of the fuzzing at this point. Therefore
IdenObfuscator indeed preserves to be a perturbation causing true non-robustness.
A similar problem was observed for LLMVariableImprove, which produced identical
function names with different casing strategies. This was not an issue in C but created
syntax errors in Rust. Section 6.2.3 points out that this issue did not significantly impact
the robustness interpretation of this perturbation, yet it should be noted in this context.

Likewise, Appendix A.4.2 displayed that the code translation system had higher error
rates for all perturbations upon using the other LLMs. This could have resulted in
an underestimation of a model’s overall translation performance. However, Section 9.6
concluded that Identity also showed an elevated error rate, which therefore means that the
findings about robustness remain relevant. Furthermore, since repeated attempts seemed
to solve these errors, the interpretation was that this increased error rate is primarily due
to a weakness of the models and not a weakness of the framework itself.

By incorporating the documented errors into the interpretation of the results, we can
minimize the risk of misinterpreting results due to framework errors instead of genuinely
identified robustness issues.

Selection of Metrics and Parameters Another factor that influences the interpretation
of the assessment of the used parameters for RP𝑠@k. The thesis mostly focused on an
evaluation with 𝑛 = 𝑘 = 5 for each perturbation. When evaluating with 𝑛 = 𝑘, the metric
results in full correctness (𝑅𝑃𝑠@𝑘 = 1) as soon as one of the 𝑛 attempts succeeds. Therefore,
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it masks the true probability of generating a successful translation for only one attempt.
However, the decision was to use these parameters, as they are less impacted by errors
of the translation system. Furthermore, as the results of the thesis have shown, for the
best performance, it is necessary to work with repeated translation attempts. Choosing
𝑛 = 𝑘 = 5 reflects this application with five attempts. Nonetheless, including 𝑘 = 1 would
have also been beneficial in hindsight, but would have resulted in an even more elaborate
discussion. Besides this, evaluating stochastic models always raises the question of whether
there are enough data points 𝑛 to enable a meaningful interpretation. Figure 9.1 details,
that not all models stagnate completely within 𝑛 = 20 attempts. So, increasing the number
of baseline and perturbation runs could lead to a more statistically safe estimation of
robustness. However, as each additional run per perturbation significantly increases the
total number of LLM calls, it also significantly impacts the overall cost, regarding runtime
and API-usage. Considering this, Figure 9.1 shows that within 𝑛 = 5 the models begin to
saturate, underlining that five is a good trade-off between cost and performance.

Statistical Certainty of Single Perturbations The framework judges robustness by
comparing the results of a perturbation against the performance of the unperturbed baseline.
Specifically, it uses a single aggregated RP𝑠@k value under a perturbation and compares
its position relative to the unperturbed baseline. This comparison only involves a single
data point and therefore cannot guarantee that this specific data point is representative of
the perturbation’s own underlying performance distribution. An ideal, statistically sound
test must also incorporate the fluctuations under perturbations to prevent perturbations
from being incorrectly classified as robust, consequently comparing statistical significance
between two distributions. However, given the large amount of perturbations, files, and
feedback loops, this would have resulted in a tremendous increase of LLM-calls, which
was infeasible due to cost and time restrictions. Nonetheless, the way the results were
interpreted is still relevant. Since the decision was to use the stricter Z-Score of |3.29| as
a threshold, outlying data points of a perturbation remain highly likely to be genuinely
caused by the variation itself.

Causality Feedback Loops The thesis concluded that feedback loops improve robustness
of LLM-based code translation systems. The visualizations in Chapter 7 and Section 9.4
showed that the iterative repairs improved the performance and decreased the range of
deviations found for perturbations. However, it cannot be guaranteed that these findings
are caused by the feedback itself, or rather by the fact that the LLM had another attempt
to translate the code correctly. It is hard to isolate the causal effect of the prompted
feedback from simple repetition.

10.3.2 External Threats
External threats include factors that could influence the generalization and transferability
of the thesis’s conclusions. Therefore, these threats describe potential issues that could
prevent the conclusions from being relevant to other works in the same area, or applications
of LLM-based code translation systems.

Limitations of the Dataset The evaluation was conducted on only 50 files. While it
was aimed to increase the diversity by sampling from different sources (i.e., proprietary
automotive code, open source libraries, and competitive programming tasks), it remains
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the question whether this small exemplary dataset covers the broad diversity of legacy C
codebases that could be translated into Rust. Similarly, the files predominantly originated
from embedded automotive code. It is unclear whether the findings are directly transferable
to other application domains of C and Rust.

Limitations of the Models Another factor that influences the transferability of the
results is the chosen models. As RQ5 points out, results are not directly transferable
to other models. The evaluation only covers the models GPT-4o-mini, GPT-3.5-turbo,
Phi-4, and Qwen2.5-Coder-14B. Therefore, the evaluation misses a robustness assessment
of reasoning models, which, according to SOTA benchmark leaderboards, produce the
best results in logical tasks like code generation [Cod25b]. During the development of the
framework, access to affordable reasoning models was limited. Consequently, due to the
cost and runtime, the decision was not to include reasoning models.

Furthermore, the evaluation has only been conducted with temperature-based sampling
configured with a temperature of 0.7. The results might look different when using another
sampling strategy or other temperature values.

Lastly, because of the limited time-scope, the evaluation for Qwen2.5-Coder-14B was
only conducted with 𝑛 = 1 per perturbation, clearly impacting the trustworthiness of the
interpretations for this model.

Limitations of the Use Case The thesis focused on evaluating C to Rust translation.
Therefore, the results may not generalize to other LLM-based tasks. They might not even
generalize to translation tasks between other language pairs. However, evaluating this was
not the focus of this thesis.

10.3.3 Critique on Framework Elements
With the gathered knowledge from the evaluation, there are other aspects of the framework
that go beyond internal and external validity.

The first aspect is the Z-Score based robustness threshold. While this approach worked
well for the normally distributed baseline of GPT-4o-mini and Qwen2.5-Coder-14B, it
was not applicable to GPT-3.5-turbo or Phi-4. The necessity to adapt the threshold,
incorporating minimum and maximum values of the distribution, negatively influences
the comparability and standardization of the robustness classification between models.
The reliability of this methodology strongly depends on the noise profile of the evaluated
model.

Besides the weakness of the Z-Score RQ4 concluded that there is no correlation between
semantic similarity and robustness. However, this conclusion is limited to the perturbations
implemented in the framework. Since these perturbations were initially designed not to
produce highly different or semantically unequal versions, the conclusion might be different
with another set of perturbations. Furthermore, the evaluation only presented the results
for one embedding model ada-002. Other models might yield other cosine similarities. At
this point, it is not definitely clear whether robustness is truly unpredictable through
similarity of inputs, or whether the chosen model and perturbation subset led to this
conclusion. However, it is worth mentioning that multiple different embedding models
were tested during the development of the framework. Doing this, it could not be observed
that an overly drastic similarity difference existed when comparing the scatter plots. The
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decision for ada-002 was due to it being an embedding model of OpenAI that might be
better suited to an evaluation primarily conducted on GPT-4o-mini.

10.4 Future Work
The critical reflection on the threats to validity of this thesis not only highlights the
limitations of this work but also reveals potential areas for improvement for future works.
These areas can be distinguished into three groups: (i) refinement of the evaluation
framework, (ii) extending the scope of the evaluation, and (iii) incorporation of advanced
mechanisms.

10.4.1 Refinement of the Evaluation Framework
The previously discussed critique of framework components in Section 10.3.3, implies the
improvement of the proposed evaluation framework itself.

Update the Z-Score Approach Using Z-Score to distinguish between noise and true
non-robustness is not trustworthy for non-normally distributed noise profiles. Furthermore,
the thesis identified the limitation of assessing the robustness by a single data point under
a perturbation. Future works should investigate alternative approaches to distinguish
between noise and non-robustness.

They could update the proposed methodology and use a statistical approach that is
statistically robust, also for non-normally distributed noise profiles and allows comparing
value distributions under a perturbation, like the non-parametric Wilcoxon-Mann-Whitney-
Test [Wil45] for example. This would increase the certainty of the results. In addition,
by removing the need to select a suitable robustness threshold for a given noise profile
(Z-Score, Maximum, or Minimum), it would become a more standardized interpretation of
the translation statistics.

Measuring Semantic Similarity The employed cosine similarity with ada-002 did not
reliably correlate with robustness as discussed in RQ4. Future works could investigate
whether this is due to the limitations of cosine similarity reflecting the semantic similar-
ity, or rather an unpredictability of LLMs. A possible starting point could be to utilize
approaches that are specifically designed for code comparisons, like Zhou et al.’s Code-
BertScore [Zho+23]. Their approach also relies on embeddings, but they do not solely
convert an entire file into an embedding vector. Instead, they employ a more fine-grained
approach using pairwise cosine similarity between “non-punctuation code tokens”.

Improving Step I of the Framework The prior section detailed that the framework
missed on directly verifying semantical equivalence between Identity and the perturbed
file. To ensure this requirement, future works could extend the framework to automatically
incorporate differential fuzzing on the Identity and the perturbed version. Preventing the
generation of perturbations that do not adhere to the semantic equivalence requirement
and therefore would not reflect robustness, but rather the framework’s abilities to translate
an entirely different task. Moreover, the framework should be extended to include a
mechanism to prevent the generation of function names that are invalid in Rust, which
blocks the framework from applying differential fuzzing. A simple blacklist including “_”
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could have reduced IdenObfuscator from producing fuzzing setup errors. Similarly, a
check that prevents producing equal function names with different casing strategies would
have been beneficial for LLMVariableImprove. Furthermore, since the thesis concluded
that robustness among perturbations is not transferable to other perturbation strategies
with similar characteristics, extending the number of perturbations would be a way to
cover a broader range of input variations. Specifically, such perturbation strategies could
focus on the already known difficulties when translating C to Rust (i.e., introducing global
variables, unions, goto statements, and more, see Section 2.1.2).

10.4.2 Extending the Evaluation Scope
To improve the generalization and transferability of the results, future work could increase
or change the scope of the evaluation.

Other Benchmark Datasets Future works could evaluate robustness on larger datasets,
with more files that cover a broad range of real-world relevant C code. Since the results
under LLMCodeExtraction signal a weakness for code snippets with nested functions
and complex control flows, the dataset should also include such algorithmically complex
examples to investigate if this is an inherent weakness, or whether it was caused by the
LLMCodeExtraction adding unnatural code variations.

Evaluate other LLMs The thesis did not investigate the robustness of reasoning models.
During the design of the thesis’s experiments, such models were pricey and not affordable
for the tremendous amounts of LLM calls in a robustness evaluation. However, recent
innovations like GPT-o4-mini [Ope25b] show a trend that reasoning models are becoming
more affordable, making them another option for a robustness evaluation. It would be
interesting to see whether reasoning models with their improved capabilities in logical
thinking are even more robust than normal LLMs.

Robustness in Translating Other Language Pairs The thesis entirely focused on
evaluating the robustness of an LLM-based C -to-Rust code translation system. Another
valuable contribution would be to investigate whether the discoveries of this work are
transferable to the translation of other relevant language pairs like COBOL-Java [Gan+24],
Java-Kotlin [Tao+24], and others. The general methodology is directly applicable to other
languages. However, one would need a differential fuzzer tailored to the desired language
pairs. Additionally, languages that are not supported by tree-sitter [Bru+25] would need
more implementation, as the perturbation process heavily relies on this package.

Optimizing Sampling Strategies The thesis only employed temperature-based sampling
with a fixed temperature of 0.7. A valuable contribution would be to investigate the
impact of different sampling strategies on the robustness. Such an investigation may reveal
the optimal sampling configuration to optimize the trade-off between robustness and
performance.

10.4.3 Advanced Translation-Mechanisms
The findings of this thesis sparked creativity and justify trying other translation techniques,
which may improve robustness and translation performance.
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Alternative Feedback Loops Strategies To empirically prove that the effects of RQ2
were due to the feedback and not merely due to repeated translation, future work should
incorporate a direct comparison that includes a similar amount of iterations in case of
failure but without giving the model feedback about the failing reason. Moreover, the
implemented feedback approach could be extended to include more context and better
feedback for fuzzing-related failures. This could account for examining whether feedback
loops limitations in fuzzing failures are due to the feedback itself or the incompetence of
the LLM fixing logical errors.

Preprocessing the Data The thesis observed that the models GPT-4o-mini and Phi-4
are sensitive to perturbations on comments in German and produce significantly improved
translation performance. To solidify this finding, it may be interesting to preprocess the
dataset to apply such a perturbation to replace the Identity to only include German
comments. According to the results of the thesis, this should improve performance, and
might be more robust than the current Identity? Additionally, we saw that perturbations
like IdenObfuscator and LLMVariableImprove can produce perturbations that are
valid for C but cannot be translated into Rust because of invalid function names. It
would be good to preprocess the dataset or files to be translated beforehand, to update
problematic function names in Rust to ensure that such an issue is not the reason for a
non-fuzzable translation.

Ensemble Translations Figure 9.2 suggests that different models have different strengths
when translating files. One model might successfully translate a file that another does not,
and vice versa. Considering this, a cheap way of improving the general performance of a
code translation system could potentially be to employ ensemble approaches that combine
different models into the translation pipeline. One way would be to iteratively try another
model in case of failure, starting with the cheapest model. In case none of the ensemble
models translate the file successfully, one could start with feedback iterations, starting
with an additional iteration for the cheapest model, and trying the more expensive models,
if it does not work. Another way that would be inspired by Figure 9.1 might be to start
with a model that has high one-shot performance without feedback loops, GPT-4o-mini
for example, and in case of failure, using a model that showed higher sensitivity through
feedback, like Phi-4. It would be interesting to see whether such techniques could lead to
improved performance. Lastly, this would also pose the question whether such an approach
is more or less robust than translations with only one model.

Incorporating Safe Rust into the Measurement The thesis only evaluated robustness
according to compilation success and fuzzing success. While fuzzing success is the ultimate
goal of a successful code translation, to additionally quantify the received benefits through
an LLM-based translation compared to rule-based approaches, it would be necessary to
quantify the success ratio of translating into safe Rust. Consequently, this additional
metric would raise the robustness question, whether perturbations would hinder LLM-
based systems from translating into safe Rust. However, such a metric should also account
for feasibility, since not all concepts of C code are translatable to safe Rust [Theb].
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10.5 Are LLM Translators a Benefactor or an Enemy?
The thesis started with Miguel Sáenz’s statement that a translator can either be a
“benefactor of humanity” or a “veritable public enemy” [MW21]. Considering today’s rapid
progress and acceptance of LLM-based SE, this raises the question of whether modern
LLM-based translation systems are Sáenz’s “benefactor” or rather perform like a “veritable
public enemy”. Considering DARPA’s call for C-to-Rust translation solutions [DAR24],
Sáenz’s quote becomes especially relevant for this particular translation task. The fact that
C is used across many legacy and safety-relevant systems, even though it is susceptible to
memory-safety, makes a translation into a memory-safe language like Rust highly desirable.
However, traditional automatic translation approaches fail to leverage Rust’s idiomatic
safety features, whereas manual conversions are costly and prone to result in functionally
inequivalent translations [Li+25], potentially introducing new bugs to an originally working
system. LLMs and their “emergent abilities” in processing natural language and code
present a promising alternative to these approaches. The thesis motivation highlighted
that even though there is an enormous potential for an LLM-based modernization of
old codebases [Yan+24b; Yan+24a], the area shows relevant research gaps. Specifically,
the literature lacked a comprehensive robustness evaluation of such translation systems,
which assesses their robustness to the variations and uncertainties of real-world codebases.
Prior works that evaluated the robustness of LLM-based code generation only partially
addressed this and focused on other use cases, not real-world relevant benchmarks, or
purely on natural language perturbations [Wan+23; Yan+23a; Mas+23; Imp+25].

This thesis aimed to close this gap. Its main contribution is the development and
application of a comprehensive robustness evaluation framework tailored to LLM-based
C to Rust translation. The proposed framework includes components for (i) diverse and
code-focused perturbations that cover variations of varying complexity levels (ii) an
preexisting SOTA code translation system incorporating a generate-and-check pattern
that automatically verifies functional equivalence through differential fuzzing and applies
auto-repairing feedback loops, as well as (iii) a multi-dimensional evaluation concept,
leveraging existing and novel metrics (RP𝑠@k, RC𝑠@k) with statistical baseline analyses,
that aims to be a reference when distinguishing between inherent model noise and true
robustness deficits (RQ1, RQ2).

Applying this framework on modern LLMs like GPT-4o-mini, GPT-3.5-turbo, Phi-4,
and Qwen2.5-Coder-14B gave a detailed view on their robustness:

Against prior beliefs and older code generation robustness works modern LLMs surpris-
ingly signal predominantly robust behavior under most real-world relevant input variations,
reflecting changes in formatting, identifier or comment-based refactorings, as well as control
flow variations (Chapter 6, Chapter 9). The evaluation clearly showed that LLM-based
translation has the potential to act as a “benefactor” when facilitating the tedious task of
manual translations.

However, the code translation system was not entirely robust for all scenarios. The
models revealed weaknesses in processing certain perturbations (IdenObfuscator, LLM-
CodeExtraction) and additionally exhibited model-specific sensitivities (RQ5). Therefore,
without a comprehensive evaluation, LLM-based code translation can indeed act unex-
pectedly and unpredictably, consequently behaving like a potential “enemy” that does its
job not reliably.

A pivotal feature that pushes LLM-based code translation systems towards behaving like
a “benefactor” is feedback loops. The experiments showed that they not only significantly
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increase the overall translation performance but also improve the robustness. They proved
especially helpful when repairing compilation and linting errors, which ultimately led to a
reduction of the magnitude of non-robust performance deviations (RQ3). Nonetheless, the
results suggest that their abilities are limited when problems arise due to deeper logical
errors that lead to fuzzing counterexamples.

In addition, the thesis shows the individuality of the models. We saw that among the
evaluated models, no model was “the” most robust. Instead, defining and selecting the best
model is a trade-off between performance, robustness, and inherent noise profile, while
accounting for how many translation attempts one can afford in terms of price and compute
time (Figure 9.17). Likewise, the thesis came to the conclusion that it is not possible to
predict robustness by quantifying semantic similarity with cosine similarity (RQ4).

Consequently, all findings move towards the necessity of model-specific and task-specific
evaluations, with specifically tailored perturbations to prepare and evaluate a translation
system for practical usability. That clearly aligns with the concerns of Nezhurina et
al. [Nez+24], stating that LLMs abilities should not be overestimated when generalizing
prior benchmark results to seemingly similar tasks.

So are LLM-based translator “benefactors” or “enemies”? Based on the thesis discoveries,
the answer is that they are both, or at least have the potential to be both. They clearly
are not marvelous systems that reliably cope with all input variations, leading to infallibly
robust translations. Yet, they are also not true “veritable public enemies”, that always
act unexpectedly when prompted with potentially relevant input variations of practical
environments. Rather, they are predominantly robust systems with only minor weaknesses.
Therefore, their dangers and benefits are closely related to how we use and evaluate
them. With a comprehensive robustness evaluation like this, we can reveal the particular
weaknesses that may be relevant for a specific use case and reduce the system’s potential of
unexpectedly becoming an “enemy”. In addition, with strategies like feedback loops, we can
support it even more so to act as “benefactor”. The thesis showed that robustness is not
an optional feature, but rather another dimension beyond simple translation performance.
Only by continuously assessing the robustness of LLM-based translation systems can we
ensure that these systems become reliable tools in the complex yet desirable process of
software modernization.



A Appendix

A.1 Perturbation Strategies
Table A.1 demonstrates perturbations applied to an exemplary prompt, where the original
prompt is defined as follows.

Exemplary Identity Prompt

Instruction: Translate the following C code to Rust. Keep all identifiers exactly as
they are.
Code:� �
#include <stdio.h>

// Recursive function to calculate Fibonacci numbers
int calc_fibonacci(int n) {

if (n <= 1) { return n; }
return calc_fibonacci(n - 1) + calc_fibonacci(n - 2);

}

int main() {
int n = 10, i;
for (i = 0; i < n; i++) {
printf ("%d ", calc_fibonacci(i)); }
return 0;

}� �
Moreover, this section details the functionality of the implemented perturbation strategies

and shows that they adhere to the requirements of a perturbation.

A.1.1 Implementation Details
Since programming languages follow strict syntactic rules, implementing perturbation
strategies on code or comments is not a trivial task, which can be demonstrated by a small
example. Although replacing variable names seems to be an easy task, without the use
of tools, it can get complicated and error-prone. Replacing a variable does not mean to
replace a single string, it means to replace all occurrences of this string, where the string
belongs to the scope of the variable.

Think of an iteration variable 𝑖 in a for-loop, for example. Replacing all occurrences
of 𝑖 in the code part of the prompt would not be accurate, since it could include multiple
definitions of 𝑖, outside this specific loop. Instead, one would have to replace all occurrences
of 𝑖, inside the scope of the for-loop.

This small example shows what goes into the supposedly easy task of replacing a
variable name. Fortunately, some tools simplify such operations. To be more precise, the
thesis utilized tree-sitter [Bru+25], a Python package that enables parsing code into an
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Perturbation Target Parameter Result
Backtranslation Instruction EngGerEng identifiers → the identifiers
Butterfinger Instruction Prob: 0.05 Translate → Transmate
ChangeCharCase Instruction Prob: 0.3 Translate → tranSLaTE
Concretizer Instruction Min: 3 Max: 5 + The code contains a for loop . . .

Translation Instruction German Translate → Übersetzen Sie
Translation Instruction Korean Translate → 번역하십시오
Backtranslation Comments EngGerEng to calculate → for calculating
Butterfinger Comments Prob: 0.05 Fibonacci → Fibonscci
ChangeCharCase Comments Prob: 0.3 Recursive → REcursiVe
LLMCommentInsertion Comments + // . . . essential to terminate recursion . . .

RemoveComments Comments − // Recursive function . . .

Translation Comments German Recursive function → Rekursive Funktion
Translation Comments German Recursive function → 재귀 함수
CodeFormat Code Style: Mozilla if (n <= 1){ return n;} → if (n <= 1)
ABC Code int calc_fibonacci(int n) → int b(int a)
Backtranslation Code EngGerEng int calc_fibonacci(int n) → int calculate_fibonacci(int n)
Butterfinger Code Prob: 0.05 int calc_fibonacci(int n) → int calc_fibonaxci(int n)
CamelCase Code int calc_fibonacci(int n) → int calcFibonacci(int n)
ChangeCharCase Code Prob: 0.3 int calc_fibonacci(int n) → int cAlc_fibonacCi(int n)
IdenObfuscator Code calc_fibonacci(int n) → calc_(int n)
LLMVariableImprove Code int calc_fibonacci(int n) → int get_fibonacci(int n)
PascalCase Code int calc_fibonacci(int n) → int CalcFibonacci(int n)
SnakeCase Code - (already is snake_case)
Translation Code German int calc_fibonacci(int n) → int berrechne_Fibonacci(int n)
Translation Code Korean int calc_fibonacci(int n) → int 피보나치_계산(int n)
ConstantInsertion Code + const int DEFAULT_TIMEOUT = 30;
DeadCodeInsertion Code + static inline int multiply(int a, int b) {return a*b}
IncludeCommentAdder Comments used_calls: False <stdio.h> → <stdio.h> /*getchar()*/
LLMCodeExtraction Code for (i = 0; i < n; i++). . . → print_fibonacci_sequence(n);
FunctionSignatureChange Code int calc_fibonacci(int n) → int calc_fibonacci(int n, int a)
ForWhileSwitch Code for (i = 0; i < n; i++). . . → while (i < n). . .
ConditionSwap Code if (n <= 1){ return n;} → if (1 >= n){ return n;}
ConditionDup Code if (n <= 1){ return n;} → if (n <= 1 && true){ return n;}
DeMorgan Code if (n <= 1){ return n;} → if !(n > 1){ return n;}

Table A.1: Perturbations applied to Exemplary Identity Prompt. The result column
shows one of the effects a perturbation had on the example prompt.
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AST-representation. The AST representation enables easier modification of certain code
structures, syntax is represented in nodes, which subsequently can be modified.

The tree-sitter package comes with a query language, which enables querying for specific
tree-nodes. Going back to the variable name replacement, one can easily query for the
identifier node that represents the variable and replace its name. This ensures that only
relevant occurrences of the variable are changed, rather than when implementing it with a
naive string replacement.

Despite using the abstraction layer of tree-sitter, perturbing code syntactically correct
remains a nontrivial task, and unforeseen edge-cases can still lead to producing errors.

Hence, the framework involves performing a syntax check after a perturbation has been
created, by using the diagnostic tools of clang-compiler [LLVa]. Incorporating such syntax
check is not only a convenient feature during the implementation process, instead it is
also a valid way to ensure that a perturbed dataset adheres to the requirement of being
syntactically correct.

In addition, the syntax check also helps when perturbing the code using LLMs. The
nondeterministic nature of LLMs can lead to producing incorrect results, although the
model always produced the expected results during development. Similar to the generate
and check pattern of the code translation system, the perturbation process utilizes a
feedback loop strategy for LLM-based perturbations. As long as the model’s perturbation
response fails the syntax check, the model is re-prompted, including the generated code
with the clang diagnostic error description. While this does not guarantee a syntactically
correct result, it increases the chance of getting a correct result. However, because of no
correctness guarantee, limiting the number of retries is necessary for such a process. In
detail, the framework uses a maximum of five retries by default, as this showed promising
results during the development process of the framework.

A.1.2 Perturbations Functionality in Detail
Identity Identity is the baseline “perturbation” that performs no modifications to the
instruction nor to the code part of the prompt. The commonly used term Sampled Identity
refers to the mean value of the computed baseline distribution, which is explained in
Section 4.5.1.

Backtranslation Backtranslation translates text into a target language and then back
into the original language, producing a paraphrased version of the original. Paraphrasing is
highly relevant as it reflects that different persons can produce different texts or different
code for the same task. This technique has been applied to instructions in [Mas+23;
Hua+21] and to comments in ReCode [Wan+23]. This thesis additionally applies this
perturbation to code, i.e., function names, variables, or constants. Since identifiers that
contain multiple words are concatenated together, for the translation, those concatenation
was joined by a space. After the translation, the space was then replaced by an underscore
to form valid identifier names. Backtranslation is an easy way to include a paraphrasing
perturbation in the framework. For the experiments of the thesis, the input is first translated
into German and then back to English. Being a native German speaker, using German as
the middle language was reasonable.

Butterfinger The Butterfinger perturbation introduces probability-based typos into
the text. Specifically, this strategy assigns a random float value to each character of the
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input. If the assigned character value falls below a predefined threshold, the character is
replaced with one of its nearest neighbors based on a QWERTY -keyboard layout [Wik25b].

Introducing typos is a relevant way to simulate real-world noise, which an LLM should
be robust against. Typos are a common occurrence in real-world inputs, especially in code
comments, variable names, or natural language instructions. Since minor errors do not
change the intended semantics of a text, a robust model should not be misled by such a
perturbation. The probability of a character being replaced was set to 0.05, as this value
was also used and validated for naturalness in ReCode [Wan+23].

ChangeCharCase ChangeCharCase randomly changes the case of characters in the
input. Similar to Butterfinger, a random float value is assigned to each character of the
input. If the assigned value falls below a certain threshold, the character’s case is flipped.
This perturbation simulates real-world variations due to inconsistent casing conventions or
accidental typing errors. While these changes don’t affect the semantics of a text, they may
affect the model’s capabilities of processing the inputs due to the tokenization. Nonetheless,
a robust LLM should be able to handle this without difference in performance.

This perturbation strategy has been previously applied to comments in ReCode [Wan+23].
This thesis goes beyond that and targets either instruction, comments, or code. The
probability of a character switching its case was set to 0.3. ReCode validated the naturalness
for a probability of 0.35, but early investigation showed that the perturbed prompts were
changed too strongly. Therefore, a slightly lower probability was chosen in this thesis.

Concretizer The Concretizer perturbation is based on COCO’s perturbation [Yan+23a].
However, unlike COCO, which extracts features from the generated code, the code features
in the thesis’s perturbation are extracted from the original C code. Like COCO, this
perturbation randomly generates either requiring or forbidding specifications in the instruc-
tion, based on the extracted features. The original COCO perturbation used a complex
heuristic to select the concretizations added to the prompt. Since this perturbation is only
one of many in this framework, it has been decided to simply randomly sample three to
five feature constraints to make the implementation process more efficient.

Translation Similar to Backtranslation, the Translation perturbation is applied to
instructions, comments, or code. This thesis enables assessing the robustness of a model
when encountering inputs of different languages, which is a potential scenario in the
real world. Many software development environments involve international teams, where
documentation, comments, and even code identifiers may appear in multiple languages
[LLC20; PJ15]. Evaluating how robustly models process varying languages is therefore
beneficial in practice. Similar to Backtranslation, multi-word identifiers were split before
translation and then joined by an underscore after being translated.

The perturbation translated the inputs into German and Korean. Choosing German
follows the same reasoning as in Backtranslation, i.e, being a native speaker. In addition,
Korean was selected based on prior language assessments of LLMs [Ahu+24]. This work
shows that models generally perform well on Germanic languages (e.g., English or German),
but their performance tends to degrade on languages that do not use Latin characters.
Specifically, the paper highlights that “highly morphological languages” [Ahu+24] like
Korean correlate with increased “tokenizer fertility”1, which ultimately leads to worse

1Meaning that more tokens are required to represent the same text.
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model performance.

LLMCommentInsertion This perturbation strategy prompts GPT-4o-mini [Ope24a] to
add meaningful comments to the C code. Specifically, it first removes all existing comments
using tree-sitter [Bru+25] and then prompts the LLM to insert comments. The prompt’s
instruction is:

Enhance the clarity of the following C code by adding meaningful and relevant com-
ments. Your comments should aim to help readers understand the code’s functionality,
logic, and structure. Feel free to use both multi-line and single-line comments as
appropriate. Please ensure that you only add comments without altering the existing
code.

Manually checking the perturbation results during development showed that this ap-
proach produces sufficiently relevant comments for this use case. However, relying on a
LLM for perturbation introduces potential unpredictable results. To mitigate this, LLM-
based perturbations included safety checks and feedback loops, which is briefly explained in
subsection A.1.1. Nonetheless, the LLM-based process can not guarantee that comments
are always relevant. However, the same limitation applies to comments written by human
programmers, making this perturbation a realistic approach for evaluating robustness to
differently documented code.

RemoveComments RemoveComments removes all comments from the C code, using
tree-sitter [Bru+25]. The motivation behind this perturbation is that comments could serve
as natural language explanations of the code, potentially helping the model understand the
code’s functionality. By removing comments, the model loses this additional information,
which might result in deviating performance. This perturbation provides insight into the
model’s robustness when faced with poorly documented codebases.

CodeFormat The CodeFormat perturbation applies different code formatters, which
produce different indentations and ensure that the code follows a consistent style. To
format the code, the framework uses clang-format [LLVb] to perturb C code with either
Mozilla’s [Mozc] code style or LLVM’s [LLVc] code style.

Coding conventions vary greatly in real-world environments and therefore, are relevant
to be robust against. Code formatting does not change the semantics of the code, it
only introduces structural modifications, which perfectly align with the requirements of
perturbations.

ABC ABC is a code perturbation strategy that replaces all identifiers with a single-
character representation in alphabetical order. If the number of unique identifiers exceeds
the number of available characters, multi-character combinations are used. Such a renaming
strategy does not change the functionality of the code, but significantly alters its readability.
As a result, the perturbation helps to find out whether an LLM relies on meaningful
identifier names for a successful translation.

CamelCase CamelCase applies the CamelCase notation to all identifiers. This means
that multi-word identifiers are concatenated, with each word starting with a capital letter
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except for the first character. Similar to formatting styles, identifier casing conventions vary
across codebases. While Rust has well-defined naming conventions [Thea], primarily relying
on snake_case, C does not necessarily follow a universal standard. Instead, conventions
can differ across projects [LLVc; GNUa], although there seems to be a move towards
snake_case [µOS14].

With casing styles not being standardized across all projects, LLMs have to be robust
against varying casing strategies. By converting all identifiers to CamelCase, this pertur-
bation evaluates whether models are robust to such modifications. Understanding how
different casing strategies impact the translation performance is relevant for practical
applications, since models should be able to generalize across varying code conventions.

IdenObfuscator IdenObfuscator operates similarly to ABC, but instead of encoding
identifiers into single characters, it removes entire words that form a complete word.
For example, the identifier calculate_mean consists of two distinct words, and this
perturbation would reduce it to _. By contrast, calc_mean contains only one complete
word, which leads to IdenObfuscator producing calc_.

Since this approach can introduce duplicate identifiers, the system always verifies whether
the updated identifier is unique. If not, the perturbation appends a number to the identifier,
resulting in identifiers like _1, or _12.

The motivation behind this perturbation is similar to that of ABC. However, using
only _ with numbers may significantly reduce code readability, making it harder to
understand. Obfuscated variables like these can occur in unintuitive automatic code
generation. However, compared to other perturbation strategies, this approach has limited
real-world applicability.

LLMVariableImprove This perturbation strategy utilizes a locally running Llama-2-
7b [Tou+24] and tries to improve the identifier names. The original identifier is prompted
to the model and instructed to generate an improved identifier. The instruction used for
this prompt is as follows:

You are a robot that shortens and improves variable names. You can only respond
with one brief variable name and you cannot use the words Sure, Here or Okay. Use
backticks around the variable name. For example, `my_variable`.

Identifier names can vary across codebases because of project guidelines, auto-generated
code, or individual coding styles. Changing the variables name with this perturbation
checks if an LLM generalizes well with variable names, which is a relevant capability for
practical applications.

PascalCase PascalCase is the same as CamelCase, but the first letter is also capitalized.
The perturbation’s motivation follows that of CamelCase. In addition, PascalCase is
less popular in practice than other casing styles. As a result, models may have encountered
only a few times during training, which could potentially result in a more challenging
casing convention for an LLM. Consequently, this perturbation helps to assess whether
the model is robust to casing strategies that are less common in real-world codebases.
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SnakeCase The SnakeCase perturbation applies snake_case to identifiers. Specifically,
this means that multi-word identifiers are written in lowercase and separated by underscores.

The motivation for evaluating this casing convention follows that of CamelCase.
Additionally, since snake_case is the standardized strategy in Rust, evaluating its impact
could provide insights into whether using consistent casing strategies in code translation
impacts model performance.

ConstantInsertion This perturbation was demonstrated in [CLS19] and adds unnecessary
constant declarations to the C code. The perturbation uses a JSON [Bra17] file that
contains random constant definitions. To apply the perturbation, the C code is parsed
into an AST, and all possible positions for syntax-correct constant insertions are identified.
Following that, the perturbation samples random constants from the JSON.

This perturbation only adds irrelevant declarations, which slightly change the code
structure without affecting its logic. Considering that codebases evolve, irrelevant declara-
tions are a potential input variation that could be encountered in practice, making robust
performance desirable.

DeadCodeInsertion The DeadCodeInsertion perturbation, used in [Wan+23; Zha+23b],
adds unused code snippets to the C code. Similar to ConstantInsertion, this perturbation
utilizes a JSON [Bra17] file that holds a list of random code snippets.

Each code snippet object has a description and a possible_insertions list that
provides where this snippet can be inserted. Since not all code snippets can be inserted
everywhere2, possible_insertions list ensures that each snippet is only inserted in
syntax-correct positions. In detail, the perturbation parses the C code into an AST and
characterizes the eligible insertion points, and then randomly samples an eligible code
snippet for this insertion point from the JSON.

Also, the description for each inserted snippet can be added as a comment, which is
controlled by a comment_probability parameter set to 50%. The perturbation addition-
ally has an “max_snippets” parameter that is set to ten by default to avoid bloating of
the code.

The perturbation is like ConstantInsertion, except the actual insertions are more
complicated, making it harder for the model. It enables an assessment of how LLM-
based code translation manages syntactically correct code that is not relevant for the
functionality of the code. Since real-world code bases may have such unused code snippets
due to unfinished implementations or legacy structures, it is worth evaluating how robust
the model is in this situation for a real-world use.

IncludeCommentAdder This perturbation introduces additional include statements,
or comments behind includes, depending on the configuration. While all other perturba-
tions can be clearly distinguished as either targeting instruction, comment, or code, this
perturbation always targets comments and code.

In order to explain this perturbation, it is best to present its configurable parameters.

• used_calls: If set to true, the perturbation adds comments that list the function
names which are used in the code and originally come from the imported library. If
set to false, the perturbation adds random function names of the important library
that are not used in the code, which could potentially mislead the model.

2For example, functions cannot be defined inside other functions in C
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• add_includes: If set to true, the perturbation ensures that all required includes are
present for the C code.

• add_random_includes: This controls whether the perturbation adds random standard
library [IBM25] includes. Given an integer, the perturbation randomly samples a
number of includes from the standard library, and appends them with a comment.

• comment_type: Specifies whether the comments use // (double slash) or /*. . . */
(slash-asterisk).

In the context of real-world relevance, include statements that can sometimes be followed
by comments, which explain why a library was imported. One way is by listing the functions
that are used from the library. Due to outdated documentation or improper refactoring,
these comments can also be incorrect, referencing functions that are no longer used.

Applying this perturbation enables the evaluation of whether LLMs are robust against
potentially misleading import statements and comments. However, to enable a meaningful
evaluation of this perturbation strategy, it has to ensure that the file contains include
statements and add include statements in case the original code has none. This is necessary
because the perturbation would otherwise not produce any change. This is the reason
why this strategy does not strictly fit into the previously described categories of targeting
either comments or code exclusively, as doing so would prevent its intended purpose.

LLMCodeExtraction The LLMCodeExtraction utilizes GPT-4o-mini to refactor the
C code by extracting code blocks into separate functions. Specifically, it utilizes this
prompt:

You have to extract some code into functions in this C snippet. Keep the semantic
meaning and dont make any changes except for extracting code into functions. Be
careful not to introduce any side effects or syntax errors! Especially, when working
with Exit Codes! You should rather leave the code as is than risk introducing side
effects or syntax errors.

Since, this strategy involves a nondeterministic LLM, it uses the same safety mechanisms
as other LLM-based perturbation strategies, as described in subsection A.1.1. Refactoring
code by extracting blocks into separate functions is a common software engineering practice.
This introduces structural changes that may affect how an LLM processes and understands
the code.

In real-world scenarios, codebases frequently undergo refactoring. This perturbation
evaluates whether an LLM can maintain performance when confronted with structurally
different yet functionally equivalent code.

FunctionSignatureChange The FunctionSignatureChange perturbation modifies
functions by adding random parameters to the function signature. Each call to the
modified function is then updated accordingly by passing a value that matches the newly
introduced parameter’s type. Since the added parameters are never used inside the function
preserves its semantic meaning, while introducing a structural transformation at Level IV.

In real-world codebases, unused function parameters can, for example, result from
incomplete refactoring. While such parameters have no impact on the code’s functionality,
they change the structure of function definitions and calls. With this perturbation, the
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framework incorporates another perturbation to evaluate an LLM’s ability to translate
structurally modified code.

ForWhileSwitch The ForWhileSwitch converts for-loops into their equivalent while-
loop representations and vice versa. This transformation is a well-known practice3 for
restructuring code while keeping semantic equivalence. This is another perturbation that
changes the code’s structure without modifying its behavior. However, perturbations
utilizing such a semantic equivalent algorithmic tweak are a more profound change (Level
V, see Figure 3.1) than only adding parameters to function signatures, for example By
assessing robustness against major structural modifications, this perturbation provides
insight into how well an LLM can generalize across different, but semantically equivalent,
representations of control flow.

ConditionSwap ConditionSwap perturbation swaps operands and predicates in log-
ical conditions, while ensuring semantic equivalence. To prevent unintended changes in
program behavior, logical AND and logical OR predicates are not swapped, as this could
interfere with short-circuit evaluation [Wik25c]. Table 4.1 shows that this perturbation is
a well-established strategy for creating semantically equivalent code perturbations. This
perturbation introduces syntactic modifications without changing the functionality while
altering the conditions. Checking whether LLMs are robust against such transformations
can reveal whether they have a robust understanding of logic.

ConditionDup The ConditionDup perturbation was introduced by Li et al. [Li+24b]
and inserts logically irrelevant elements to conditional expressions (e.g., && True or ||
False). As described in section 3.3, these additions do not modify the semantics of the
code but introduce structural changes.

Redundant conditional expressions can, for instance, arise due to auto-generated code.
A robust model should not deviate in its performance for such logically irrelevant changes.
Since ConditionDup explicitly modifies decision logic by extending conditions, it is cate-
gorized as a Level VI perturbation according to the levels of Faidhi and Robinson [FR87].

DeMorgan The DeMorgan perturbation introduces changes in decision logic while keep-
ing semantical equivalence by definition. Specifically, it utilizes De Morgan’s Law [Wik25a]
on conditional statements:

𝑎 ∧ 𝑏 ⇐⇒ ¬(¬𝑎 ∨ ¬𝑏)
𝑎 ∨ 𝑏 ⇐⇒ ¬(¬𝑎 ∧ ¬𝑏)

Even though this perturbation may have less practical relevance than other perturbations,
it leads to significant structural changes so that it serves as an effective test for evaluating
an LLM’s robustness against differently structured logical statements. This perturbation
enables a rather simple implementable perturbation that causes deep modifications to the
code in Level VI. Since deeper levels were underrepresented in related work, this strategy
is beneficial for exploring the robustness to perturbations of deeper levels.

3See Table 4.1
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A.2 Perturbation Configuration
A.2.1 Embedding of Deterministic Perturbations on Instructions
Figure A.1 shows that the deterministic perturbation strategies on instructions produce
the same instruction for each file among the same perturbation strategy.

Figure A.1: UMAP embeddings of the 50 color-coded code files, each subjected to
multiple deterministic perturbation strategies indicated by different
markers. The plot shows that the different files still form clusters with
their perturbations, suggesting that the perturbation strategies produced
semantically similar instructions.



A. Appendix 163

A.3 Baseline Performance for Different Parameters
Figure A.2 visualizes the impact of increasing 𝑠 and 𝑘 for 𝑅𝑃𝑠@𝑘 for GPT-4o-mini. It
confirms that higher 𝑠 results in higher difficulty for each 𝑘. Furthermore, higher 𝑘 leads
to improved results. Both findings are expected, as increasing 𝑠 introduces the worst-case
approach that is pruning variances, and larger 𝑘 reduces sensitivity to variance, as it yields
higher values for a less amount of correct 𝑘 runs.

Figure A.2: Sampled 𝑅𝑃𝑠@𝑘 results across various 𝑘 for 𝑠 = 1 and 𝑠 = 3. Detailing higher
values for increasing 𝑘.

A.4 Error Rates per Model
This section gives a small overview of the observed error rates.

A.4.1 GPT-4o-mini
Figure A.3 details the aggregated error rates for all deterministic perturbation strategies as
a percentage. These rates are almost similar to the error rates of the baseline in Figure 5.6.
Files 18 and 43 showing significant rates for either fuzzing exception or fuzzing setup. Both
of these error types can be caused by the model not strictly following the intent and maybe
producing different function names, or problematic functions, which the fuzzer can not
call. Considering these errors stem from incorrect translations, those of the translation
system or LLM API would affect the interpretability more. However, these error rates are
rather low.

Figure A.4 shows that IdenObfuscator produced the most errors in the translation
system, yet in only 1.2% of calls. Recall that IdenObfuscator produced the worst results
and failed for the previously perfect or variant files: 7, 19, 41, 42, and 44. Figure A.3
shows that none of these files were affected by errors of the translation system or LLM
API. Instead, the IdenObfuscator seemingly produced different function names, leading
to 10% error rate in the fuzzing setup. This effect is primarily due to the perturbation
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Figure A.3: Errors rates per file in % aggregated for all deterministic perturbation
strategies for GPT-4o-mini.

sometimes producing the function name “_”, which is syntactically possible in C but not
in Rust, which therefore makes a compilable Rust version with identical function names
impossible. However, as detailed, this was not the primary reason for IdenObfuscator
causing non-robust performance, as this only happened to files that could also not be
translated successfully for the Identity version.
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Figure A.4: Error rates per deterministic perturbation in % for GPT-4o-mini.
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Figure A.5: Error rates per deterministic perturbation in % for GPT-3.5-turbo.
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Figure A.6: Error rates per deterministic perturbation in % for Phi-4.
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Figure A.7: Error rates per deterministic perturbation in % for Qwen2.5-Coder.

A.5 Correlation of Cosine Similarity and Translation
Success

A.5.1 Compilation Success for GPT-4o-mini
Deterministic Perturbations

Figure A.8 shows the cosine similarity and GPT-4o-mini’s compilation success under
deterministic perturbations. Without feedback loops there is a correlation of −0.166 (weak)
and with feedback loops it is 0.013 (weak). Consequently, there is no correlation between
cosine similarity and compilation success for deterministic perturbations on code.

Figure A.9 visualizes the same for perturbations on instructions. The correlation coeffi-
cient between cosine similarity and 𝑅𝐶1@5 could not be calculated for this data, because
the 𝑅𝐶1@5 had the same value for every perturbation. That means 𝑅𝐶1@5 does not show
any variance, so its standard deviation is zero. Since calculating the correlation coefficient
involves dividing by the standard deviation, this results in an undefined operation.

Stochastic Perturbations

Figure A.8 visualizes the correlation between cosine similarity and compilation success for
GPT-4o-mini under stochastic perturbations. Without feedback loops there is a correlation
of −0.738 (strong) and with feedback loops −0.214 (weak). That shows again that feedback
loops might improve robustness for less similar inputs.

Figure A.11 illustrates the stochastic perturbations on instructions. Similar to fuzzing
success, the correlation coefficient yields 1.0, as there are only two data points, making
this assessment not meaningful.
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Figure A.8: Cosine similarity and compilation success of deterministic code perturbations.
Divided into perturbations with high and low similarity, and robust or non-
robust behavior.
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Figure A.9: Cosine similarity and compilation success of deterministic instruction per-
turbations. Divided into perturbations with high and low similarity, and
robust or non-robust behavior.
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Figure A.10: Cosine similarity and compilation success of stochastic code perturbations.
Divided into perturbations with high and low similarity, and robust or
non-robust behavior.
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Figure A.11: Cosine similarity and compilation success of stochastic instruction per-
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A.6 Overview of Used Tools
A.6.1 Artificial Intelligence Tools
This section details the AI-tools that were used during the creation of this thesis. Table A.2
lists these used tools and explains for what tasks they were used and how. As LLMs are a
main component of this thesis, they do not need an extra explanation. In addition, the
thesis sparsely tested OpenAI’s new image generation model [Ope25a] and experimented
with eraser4. The exact generations of these visual tools did not make it into the thesis,
but sparked ideas for creativity, which were then utilized manually with the design tool
Figma5. An intermediate step was to vectorize the generated images with Recraft AI 6

to work with them in Figma. Furthermore, for consistency and readability, Grammarly7

was used. Phrases or words that went beyond my English vocabulary were translated
with Google Translate8 or DeepL9. Lastly, Github Copilot10 is a commonly used tool
in Bosch’s development environment. The thesis benefited from its capabilities in auto-
completion, inline edits, and chat features. While the thesis’s readability, creative examples
in visualizations, or coding efficiency might have benefited from using these tools, I can
confidently ensure that the “scientific contribution” of this work was entirely made by
myself.

A.6.2 Online Tools
To complete the overview of used tools, Table A.3 lists notable online tools, that have
been used for the creation of this thesis.

4https://www.eraser.io/
5https://www.figma.com/
6https://www.recraft.ai/
7https://grammarly.com/
8https://translate.google.com/
9https://www.deepl.com/

10https://github.com/features/copilot
11https://www.bosch-presse.de/pressportal/de/en/generative-ai-at-bosch-263243.html
12This image was not good, but sparked the idea for the bowl with green and red balls.
13https://scholar.google.de/
14https://dblp.org/
15https://www.powerthesaurus.org/
16https://www.figma.com
17https://gpt-tokenizer.dev

https://www.eraser.io/
https://www.figma.com/
https://www.recraft.ai/
https://grammarly.com/
https://translate.google.com/
https://www.deepl.com/
https://github.com/features/copilot
https://www.bosch-presse.de/pressportal/de/en/generative-ai-at-bosch-263243.html
https://scholar.google.de/
https://dblp.org/
https://www.powerthesaurus.org/
https://www.figma.com
https://gpt-tokenizer.dev
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Tool Use Case Used Prompts/Examples
AskBosch11

(GPT-4o-mini)
Fine-tuning the wording of the thesis’s
title

“I want to improve the title of my
master thesis. What is a good title
that incorporates ‘development‘?”

AskBosch
(GPT-4o-mini)

Conciseness of chapter titles, section
titles or captions

“Is there a way of making the figure
caption more crisp: . . .”

AskBosch
(GPT-4o-mini)
ChatGPT
(o3-mini)

Latex table templating. “Can you flip the table so that it
makes more sense?”, “Turn this csv
into a latex table that is not too wide
horizontally. Use LineBreaks so that
everything is visible on a vertical A4
sheet.”

ChatGPT
(4o with search)

Finding “best practice” references “Is there an original source for cosine
similarity between embedding vectors
that is commonly cited?”

ChatGPT
(4o-mini)

Find common English terms “How do you say to ‘the best of your
knowledge‘ if you don’t want to use
‘our‘”

AskBosch
(GPT-4o-mini)
ChatGPT(4o)

Correcting Grammar “Is this correct English?: . . .”

ChatGPT
(4o)

A creative example for illustrating
tokenization in Figure 2.1

“I need a creative example for tok-
enization visualization, which fits to a
thesis with the title . . .”

ChatGPT
(Image Generation)
Recraft AI
(Vectorizing)

Initial idea of Figure 2.2. The used
figure only uses an AI-generated bowl
and the hand holding a ball. The
single vectors were set together in
Figma by hand.

“Pass@k is defined like this . . . Can
you come up with a great picture
based on this, so that one directly
understands the intuition behind
pass@k?”12“Just generate me an
empty bowl.”

Eraser AI Was initially used to try generating
the framework overview (Figure 4.1).
However, since no generation was
satisfactory, this was discarded, and
the visualizations were made with
Figma. It is still mentioned because
the general look of the figures was
inspired by the initial attempt.

“I need an architecture diagram for a
framework with three components . . .”

Grammarly Correction of grammatical mistakes
and phrasing.

DeepL
GoogleTranslator

Translation of words or phrases. German to English

Github
Copilot

Auto-completion, figure generation
with the chat-feature, example code
for Appendix A.1, and prompt refine-
ments for LLM-based perturbations.

“How to include the Z-Score value for
each bar . . .”, “Make the following
LLM prompt more concise: . . .”

Table A.2: Overview of the used AI-tools.

Tool Use Case
Google Scholar13

DBLP14
Getting curated and consistent BibTeX entries for found
papers from the literature search.

PowerThesaurus15 Find synonyms to prevent repetition and extend the
vocabulary.

Figma16 Design Tool used for the Figures 2.2, 2.3, 4.1, 4.2, and
4.3.

GPT-Tokenizer Playground17 Created the visualization of the tokenization example in
Figure 2.1.

Table A.3: Overview of used online tools.
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